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Abstract. We point out that the Coulomb part of the QED Hamiltonian in the Coulomb gauge
has exact two-fermion eigenstates, provided that the wavefunction satisfies a Dirac-like (or
Breit-like) equation. This equation, which describes the relative motion of a system of two
fermions of masses:; andm, and chargeg; and g2 interacting via the Coulomb potential,

is shown to reduce to the usual Dirac eigenvalue equation when ome @& taken to be
infinite. For specific/ ¥ states of the two-fermion systems, the equation is reduced to coupled
radial equations. Numerical solutions for the mass spectfiym) of the two-fermion system

as a function of the coupling constamt= |g1¢2|/47 are obtained for © states for various
combinations ofn1 andm,. We find that the ground-state energy of the two-fermion system has
normalizable bound-state solutions fokOx < a., wherea,. = 2 for my = m», but decreases
towards the one-particle Dirac result @f = 1 as one of the particle masses tends to infinity.
Our numerical results foE () are in agreement with conventional perturbativ(ezb results if

a < 1. Comparison is made with other radial reductions of two-fermion equations with purely
Coulombic interactions.

1. Introduction

It has not been possible, to date, to write down exact two-particle eigensolutions of the
QED Hamiltonian. However, it is possible to obtain such eigensolutions for a non-trivial
portion of it, in the Coulomb gauge. In the present paper we consider eigensolutions for
the Coulomb QED Hamiltonian, that is the Hamiltonian of quantum electrodynamics in the
Coulomb gauge, but for which the transverse-photon part of the interaction is effectively
turned off.

The QED Hamiltonian density for two different fermionic fielggx) and¢ (x), in the
Coulomb gauge, can be written as (we use the conventions of [1]iwithe = 1):

Hoep =Hy +Hy +He +Hr +'H,, 1)
where

Hy = ¥ (0)hi(x) ¥ (x) )

Hy = ¢! (x)h(x) (x) (3)
with

hi(x) = —ia-V +mip +qip.(x) —qgioe - Ac(x) (4)

'Hc(x)=i/d3 M (5)

8 |z — y|
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with
p(x) = qr ()Y (x) + g20" (x) (x) (6)
Hr(x) = —qu¥ () - AP (x) — g2’ () - A(x)(x) @)
and
M, (x) = 3A%(x0) + 5[V x AW ®)

In these equationg;, ¢; (i = 1, 2) are the masses and charges associated with the fermionic
fields v and¢, and we have included the possibility that there is also an external classical
c-number field, specified by the potential functiops A.. The spinor-field amplitudes

V¥, ¢ are, of course, operators in the quantum theory and they satisfy the usual canonical
anticommutation relations. The non-vanishing ones are

[Vo(@. 1), Yy, D)4 = 8up8>(@ — y) ©)

[pa (. 1), ) (y. D] = 8up8 @ — ) (10)
while all others vanish including, in particular,

[Va(@. 1), $}(y. D]+ = 0. (12)

By the Coulomb QED Hamiltoniantcorp, we mean the one in which the transverse-
photon part of the interactiori{r of (7) is ‘turned off’, that is, dropped altogether. This
allows one to write down some exact solutions to the resulting field theoreticd&iciger’
equation

Hcoeplf) = EIf) (12)
where

Hcoep = /dgx Hcoep(x, 1) (13)
and

Heorp = Hy +Hy + He. (14)

Henceforth, we shall consider the model theory defined by the Hamiltonian (13), which
does not contain any dynamical (transverse) photons, thiyiss set to zero and?, is
decoupled. Note that a consequence of the droppintefis that the resulting model is
not covariant.

2. Empty vacuum and one-fermion states

We define an empty vacuum staf® such that
¥ (0)|0) = ¢ (x)]0) = 0. (15)

Note that|0) is not the usual Dirac vacuum stat8), of QED, that corresponds to a filled
negative-energy sea [1, pp 58-9]. Rath@r, as defined in (15) contains no positive-
energy fermions nor a filled sea of negative-energy fermions. The definition (15) means
that we are not following the conventional QED approach, in which only the positive
frequency part of the spinor-field operators annihilates the Dirac vacuum. Thus, as we
show below, we shall be dealing with coordinate space Dirac-like equations, with positive-
and negative-energy states, instead of projected momentum-space equations with positive-
energy particle and antiparticle states, as happens in the conventional approach. The choice
of the unconventional vacuum enables us to write down exact eigensolutions of the Coulomb
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QED Hamiltonian, :Hcogp :. By contrast, in the conventional approach only approximate
solutions, primarily perturbative approximations, have been obtained (e.g. [2, 3,11, 13]).
However, the choice of the empty vacuum means that dynamical pair-creation effects
(loops), such as vacuum polarization, are not present in this formalism.

Since we shall not be interested here in infinite self-energy questions, we shall work
with a normal-ordered form oHc¢ogp in which all our annihilation operatorg (x) and
¢ (x) stand to the right of the creation operatgr§(x) and¢(x). This normal ordering is
achieved as usual in conformity with all the commutation relations (9)—(11). But we stress
that this is not identical to the normal ordering of conventional QED [1, p 60] since
are not the conventional annihilation operators. Thus, our normal-ordered fofig ¢Ef
() is

1 d3x d3y 2.t T 1 T
“8r ) jw—y] [91% YDV Ve (X) + q1920, ()P () Pp (3) e (x)

+42q100 VW)V (1) a(X) + a261 ()P (1) (1) ()] (16)

wherew, 8 =1, 2, 3,4 and summation on repeated indices is implied.
With the above conventions, we note that the state

|n=/&uumMuM> (17)

is an eigenstate of Hcorp : With eigenenergyE;, provided that the four coefficient
amplitudesF, (x) are solutions of

{[h1(@)]ap — E18up} Fp(x) =0 (18)

Hq:

or
(ha(x) — E)F(x) =0 (19)

in matrix notation, that is provided the spinéris a solution of the usual Dirac eigenvalue
equation (19). We see, therefore, that the exact one-fermion eigenstate (17) leads to the
usual Dirac equation with all its well known negative energy ‘pathologies’. That is, (18) or
(19) has positive-energy solutions with= m1 + - - - as well as negative-energy solutions

with E; = —m1 + ---. We shall refer tg1) as a one-Dirac-particle eigenstatetd(x) as

a Dirac-patrticle creation operator, and#dx) as the corresponding annihilation operator.

By ‘Dirac particle’ we mean a particle state described by the full four-component spinor
solution F (x) of the Dirac equation (19).

In the conventional approach no exact eigensolutions Bty ep : analogous to the
simple form (17)—(19) are possible. The exact solution of the Coulomb problem in the
conventional approach involves an infinite chain of Fock states containing any number of
particle—antiparticle pairs (e.g. (22) of [22]). In practice, this chain must be truncated at
some finite order to allow for tractable solutions. Hardekopf and Sucher [2a], for example,
discuss such a lowest-order (‘no pair’) momentum-space equation. They point out that
its ground-state eigenenergy, which for small values of the coupling constéials the
form E = m(1 - Ja? — fa* 4 ---), agrees with the exact solutiafl = +/1 — a2 of the
Dirac—Coulomb equation to @*), but not beyond. More generally, Guiasu and Koniuk
[22] have demonstrated that the well known solutions of the Dirac equation are the exact
solutions of the one-fermion Coulomb problem in conventional QED. To put it another
way, the exact solutions of the one-body Dirac—Coulomb equation (with its negative energy
‘pathologies’) is equivalent to retaining an arbitrary number of particle—antiparticle pairs in
the conventional field-theoretic approach to this problem. This remarkable property of the
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Dirac equation does not appear to be widely appreciated. In any case, since the one-fermion
Coulomb case has been analysed in detail [2a, 3, 22], as we have outlined, we shall not dwell
on it further. Instead, we shall proceed to the two-fermion problem.

3. Two-fermion eigenstates and two-fermion equation

We consider a two-Dirac-fermion state, that is a straightforward generalization of the one-
Dirac-fermion state (17), namely

2) = / x Py Fug(@, v} ()6, (1)10) (20)

wherer, ¢ could be particle or antiparticle (charge conjugate) fields. We shall be interested
in bound states in what follows later, hence we will take one of the fields to be an antiparticle
(charge conjugate) field of opposite parity, corresponding to a systemiké.e

The state (20) is an eigenstate afl¢oep : With eigenenergyE, provided that the 16
coefficient amplitudes,z(x, y) satisfy the equations

[hl(x)]ayFyﬂ(ma y) + [hZ(y)]ﬂy Fay(ma y) + [V(IE, y) - E] Faﬂ(x’ y) =0 (21)
where
Vy) = 22)
7|z — y|

In matrix notation, whereF (x, y) = [Fys(x, y)] is a 4x 4 ‘bispinor’, equation (21) can
be written as

[hi(@)]F(z, y) + [h2() F' (. 9]" +[V(@,y) — E]F(z,y) =0.  (23)

Equation (23) is a Dirac-like (or Breit-like) two-fermion Equation. In the absence of the
interfermion interactiorV, it has solutions of the form

F(z,y) = F(@)G (y) (24)

where F(x) is a solution of the Dirac equation (19) aiif{y) is similar to a solution of
the Dirac equation

(ha(y) — E2)G(y) =0 (25)

whereE = E1 + E>.
We note that (21) can be derived by using the variational principle

8(2: Hopp — E 1 12) = 0.

This is because, fo{0]A|0) = 0, the trial statg2) is insensitive to the transverse-photon
part of the QED Hamiltonian, (7), and so (21) follows directly.

For |2) to be an eigenstate of the momentum operator with eigenvil@lyg- 4, = 0, it
is necessary that the bispindi(x, y) be of the formF (x — y), whereupon, in the absence
of external classical fieldg., A., (23) becomes

[A1(M]IF () + [ho(=r)FT (M]" +[V(r) = E]F(r) =0 (26)

wherer = ¢ —y and V(r) = —a/|r| with « = |q192|/47. Equation (26) is a Dirac-like
equation for the relative motion of two fermions of massgsandm, and chargegi, g2
interacting via a Coulomb potential.

It remains, therefore, to solve equation (26) to obtain an exact two-particle Dirac-like
eigensolution of the Coulomb QED Hamiltonian. Before reducing the 16 equations (26) we
shall consider some limiting cases.
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4. Nonrelativistic and one-particle limits of the two-fermion equation

Recalling that in 2< 2 block representation
_| mw o-p
= 707 @)
and writing
_ | s 1(r)
F(r) = [u ) v (r)] (28)
wheres, ¢, u, v are themselves 2 2 matrices, it follows that equation (26) can be written
as

(mi4+ma+V—E)s— (o -pt')) +o-pu=0 (29)
(mi—mo+V —E)t—(c-ps)) +o-pv=0 (30)
(my—mi1+V —Eu+o-ps—(c-ppv)I =0 (31)
(—m1—ma+V —Ev+o-pt —(c-pul)l =0 (32)

whereo; are the usual Pauli matrices. It is evident (for example, by setfting 0) that
(26), or, equivalently, (29)-(32), have, like the Dirac equation, both positive- and negative-
energy solutions. Indeed, in this case, there are four ki#s: m; + my, E >~ m; — my,
E ~ —mj+my and E >~ —mj; — my. We shall discuss only the positive-energy solutions,
of the typeE >~ m1 + my, in this paper.
We note, first, that if we seE = ¢ + m» in (29)—(32), then divide through by, and
let m», — oo, we obtain the result that v — 0 from equations (30) and (32), while the
remaining ones reduce to the usual Dirac equations,
m+V-—-es+o-pu=0 (33)
and
(—m1+V —€eu+o-ps=0. (34)
We recall thats andu are 2x 2 matrices, so that the Dirac equations (33) and (34) hold
for each of the columns of these matrices separately. Similar Dirac equations are obtained
in the m; — oo limit but with s replaced bys”, u by —t7 andm, by m, in (33) and
(34). Thus the relativistic two-fermion equations (26), or (29)—(32), have Dirac one-patrticle
limits, a property which is held to be desirable for two-fermion equations [10].
For the nonrelativistic limit of the positive-energy solutions we wiite= m; +m, + €
and assume thatV — e)v| <« |(m1 + m2)v|. Then equation (32) implies that

~_ =  Jo-pt—(o-pul)T 35
2oms +m ){cr pt—(o-pu )"} (35)
or, in other words, thab is O(Xt, —u) Similarly, therefore, to lowest order ip/m;,

equations (30) and (31) yield the result

1 1
>~ — %(a psHT u >~ Ma ps. (36)
Substitution of (36) into (29) shows that, to lowest ordepifm;, s(r) (that is, each of its
four components) satisfies the usual Sclinger equation,

1/1 1
[ <+)p2+V—ej|s(1‘):0 (37)
2 mi ny
with well known eigenfunctions foV(r) = —a«/r, and the corresponding eigenvalues
€ = —pa?/2n?, = mymo/(m1 + my), wheren = 1,2, 3,... is the principal quantum

number.
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5. JP eigenstates and radial reduction
If the two-fermion state (20) is to be an eigenstate/ofvhere
J = / Exyl@ nj@y (@, n + / d’x ¢! (2, (@) (@, 1) (38)

with j(r) =l+s=—ir x V + %a, then we require that the bispindt (cf (23)) must
satisfy the equation

Ja(r) F(r1, m2) + [ja(r2) F (r1, 72)]" = m; F(r1, 72). (39)

In other words, in the frame wherPror4.|12) = 0|2), and using the notation (28), we
require that

I3(r)s(r) + S03s(r) + 3s(r)os = mys(r) (40)

wherer = r; — r, andl = r» x p. The same equation (40) must be satisfied by the other
three components, u, v, of the bispinorF. In a similar fashionJ?|2) = J(J + 1)|2)
implies that the bispinof in the Pro74; = 0 frame must satisfy the equation

C+3HF+l-0F+10-0oF) +30F-0" =J(J+DF (41)

and, indeed, sinc# andl - o are block-diagonal, each component,, u, v, of F must
satisfy equation (41) individually.

For givenJ, m,; equations (40) and (41), for any component, «, v of F, have four
linearly independent eigensolutions of the fomtr) = u(r)¢(r), etc. We shall denote the
2 x 2 angular ‘bispinor harmonics’ by”(7), ¢°(#), ¢ (#), ¢~ (7). They are, explicitly
(M =my),

1 _
ACEEATICI (42)
oy= L+ [\/u —M+ DU + Myt —MYM ]

= piaTry —MYM JTTM T DT —My¥+
(43)

o) = 1 [J(HM—D(HM)Y,M_? JT+MT -y, }

V2ZIQI =D | YU+ -myY, JU-M-D{J -yt

(44)

and

o 1
o (r) =

V2(T+D(2JT +3)
[JU—M+DU—M+awg-—¢u+M+Du—M+DUg}
~VT+M+ DT -M+DY}, JU+M+HUT+M+2v) 4 |

(45)

We note thatp” is antisymmetric ang®* are symmetric matrices. Furthermapé, ¢*
and ¢* correspond to opposite parity becaus¥ (—7) = (=1L Y (#) and ¢°, ¢* have
L = J whereasp® haveL = J £+ 1. These four bispinor harmonics form an orthonormal
set, in the sense thjtdf Tr(<pj<pj) = &;;, wherei, j = A, 0, 4+, — and the integrations are
taken over the entire solid angle.

Lastly we point out that for the stat@) to be a parity eigenstate, the components,
of F must be of opposite parity to that of the components, i.e. if s(—r) = £s(r) then
t(—r) = Ft(r), etc. Taken all together, this means that for a sf2tef a fermion and an
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antifermion to be simultaneously an eigenstateJéf Js;, and parity, the bispinoF, (28),
must be of the form

1Tiss(et () +is2()e®F) (e~ () + et ()
F (”—r[m(r)go(f)+uz<r)go+<f> ivl(r>go/*(f>+ivz(r>ga°(f)] (46)

for —(—1)’ parity eigenstates, and

_ [0 () +ine ) 5000t )+ 20)6°¢)
LC R It uiok S i G

for —(=1)/*! = (=1)’ parity eigenstates. Note that the parity assignments would be
interchanged for equations (46) and (47)2f were a state of two Dirac particles or two
Dirac antiparticles, rather than a Dirac particle-Dirac antiparticle state.

The radial functions in the bispinors (46) and (47) are solutions of the coupled radial
equations that are obtained by substituting (46), (47) into (26) (or, equivalently, into (29)—
(32)) and equating the coefficients of the four independent bispinor harmonics.

We make use of the following identities in carrying out the radial reduction:

o-pf(reF) = —i%{a <Fo(F) + %f(r)a ro - le(r) (48)
where ¢(7) is any 2x 2 bispinor harmonic,f(r) a radial function, and® = r/r, and
l =r x p=—ir x V. In addition, we note the following useful properties of the above
bispinors harmonics:
o-Ffpt =ap” — b (49)
o-7¢® =by~ +ap* (50)
o-lpt = f¢° (51)
o 19°=—¢°+ fo! (52)
o-lg”=—-(J+2¢" (53)
o-lpt = =Det (54)

where

J+1 7
a:\/; b:,/21+1 and f=JU+1. (55)

It is evident from equations (46) and (47) that, in general, eight coupled radial equations
are obtained, for arbitrary > O.

6. Radial equations for theJ = 0 states and their solution

For theJ = 0 states, namely the @'Sy) and 0 (3Py) states, only two linearly independent
bispinor harmonics arise, namepy andg~ ((42) and(45)), and s@ = t) = u, = v, = 0in

(46) and (47). (Here, as elsewhere, we give in brackets the nonrelativistic limit designation,
25+1,, corresponding to the’” state in question.) Thus there is only one set of four
coupled radial equations for each of @) and 0" (°Py) states:

K K
(mi+mp+V—Es—t ——t—u'——u=0 (56)
r r

K K

(mi—mop+V-—Et+s ——s+vV—-—v=0 (57)
r r
K

K
(mo—mi+V—-—Eu+s ——s+v——v=0 (58)
r r
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K K
(=m1—mpy+V —Ew—t ——t—u'——u=0 (59)
r r

wheret’ = dt/dr, etc, whileK = +1 for the 0 and K = —1 for the 0 states.

If we let E = m1+mo—+e¢, and assume thatV —e)s| <« m;|s|, etc, in the nonrelativistic
limit, then, neglecting als@ ~ O(t/m;, u/m;) in equations (57) and (58), we find that
equation (56) reduces to the expected radial &dinger equation,

(V—es— 1 (1 - 1) (s” —~ K(Kz_l)s> ~ 0. (60)
2 nq ny r

On the other hand, if we writ&€ = m; + ¢ and letm; — oo, then equations (58) and (59)
imply thatu, v — 0 while (56) and (57) reduce to the usual radial Dirac equations for
ands. Note thatk = 1 corresponds to thé” = 0~ (1Sp) states (withL = S = J = 0)
and K = —1 corresponds to thd” = 07 (3Py) states (WithL = § = 1,J = 0) in
equations (56)—(59), whereas in the Dirac lirKit= 1 corresponds tg +% with j =5 = %

and/ =0 (thezs% states), whileK = —1 corresponds te-(j + %) with j =5 = % =1

(the ?p: states). Similarly, ifm, — oo, equations (56)—(59) reduce to the radial Dirac
equatiéns fos andu, while ¢, v — 0. In short the coupled radial equations (56)—(59) have
the expected nonrelativistic and one-fixed-particle limits.

We have not been able to determine solutions to the coupled radial equations (56)—(59)
in terms of common analytic functions. It is of interest, therefore, to consider the properties
and general behaviour of the solutions before commencing with numerical solutions.

We anticipate that, ag increases, the eigenenergy spectrBifa) of equations (56)—

(59) will have a qualitative behaviour similar to that of the Dirac spectrum, namely that
E(x) decreases monotonically froi(« = 0) = m; + my until « hits a critical value

a., beyond whichE () ceases to be real. It is possible to infer the valuexrgfat least

for some cases, by considering the ultra-relativistic limit;> oo, in which case we can
neglect the masses; andm,, and seek solutions of (56)—(59) withh = m1 = my = 0.
equations (56)—(59) then have the (hon-normalizable) solutieas, s = v, |t| = |s| =1

(i.,e. F o« 1/r) for . = 2|K| = 2. Note that this result implies a possible parity degeneracy
of a.. This is analogous to the behaviour of solutions at the critical point of similar
momentum-space equations [2, 9, 11-13], for which the momentum-space wavefunction has
E = m = 0 solutions of the corresponding forf(p) = 1/p?, ata = a., and for which a
parity degeneracy af. is observed [11-13]. We might mention that the usual one-particle
Dirac—Coulomb equations have a similar=m = 0, |F| = |G| = 1 solution atx. = |K|,
where F and G are the reduced radial Dirac wavefunctions. These are the correct values
of «. for those states for whiclt («.) = 0, and even for those for which(«.) > 0.

For the Coulomb potentidé' = —a/r, wherea = |g142|/47, it is often convenient to
rescale the radial variable, that is to fet= r/a, whereaq is a suitable scale parameter. For
example, the radial functions ¢, u, v have the large behaviours ~ e, etc, for positive
energyJ = 0 bound states, wheeis given by

1 [Om1+m2)® — EY[E2 - (mq — my)?] — E\?
? — 4E2 ml = m2, m2 —_ <2> . (61)

Note that (61) implies that is real only for|my — my| < E < m1 4+ m», which means
that the bound state spectrum must lie in this domain. With the rescaliag-/a, (56)—
(59) become modified slightly, in that is replaced byap in all of them. For purposes
of numerical integration of the radial equations the scale parametan be chosen to be
anything that is convenient, be it that given in (61),a0& 1 ora = 1/u«, or whatever.
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For a power-series analysis of the radial equations it is useful to make the replacement
s = se ?, etc. Assuming solutions of the form

§ = plao+a1p +azp®+ -] (62)
i =p”[bo+bip+b2p*+ -] (63)
it = p”[co+ c1p + c2p® + -] (64)
0= p"[do + d1p +dap® + -] (65)

we find, upon substitution into the radial equations Jor, i, v and equating coefficients
of different powers ofp, that the following occurs. The coefficients pf ~* yield four
coupled homogeneous equations for the parametgrsg, co, do, Which have non-trivial
(and non-singular) solutions only if

o \2
— 2 _
v=yk (2) (66)
for any values ofn1, m,, whereupon
d b 2y — K
do_, ho__ o _2v=-K (67)
do ag dg 2(y + K) o

The condition (66) implies that the radial equations have real bound state solutions of
the form (62)—(65) only forx < 2|K| = 2, for any values ofn; andm,. This, in turn,
implies thata,. < 2 for the O states for any values ofi; andm,. This condition for
bound statesy < 2, is additional to the one that follows from equation (61), namely that
Im1 —mo| < E < my+ mo.

The coefficients of the terms ip ™ yield the recursion relations,

a(my+mp— E)a,_1 —aa, — (y + K +v)b, +8b,_1—(y + K +v)c, +3c,_1 =0

(68)
(y — K +vya, —éay,_1+a(lmy —my— E)b,_1 —ab, + (y — K +v)d, —8d,_1 =0

(69)
(y — K +va, —da_1+a(mz—my— E)e,_g —ac, +(y — K +v)d, —dd,_1 =0

(70)
(y +K+v)b,—8b_1+ (y + K +v)e, —bc,—1 +alms +mo+ E)d,_1+ad, =0

(71)

where§ = 1. These recursion relations can be used, with (66) and (67) to generate the
power series (62)—(65). ¥ = 0 then (68)—(71) are the recursion relations for the power
series representations of the functiotis), etc, rather than fo¥(r), etc. Such a series can
be used, for example, as a starting procedure for the numerical integration of the radial
equations (56)—(59).

Unlike in the Dirac case, the recursion relations (68)—(71) do not admit power series
solutions of the form (62)—(65), which terminate at the same powerysayn’, so that
ay+1 = byi1 = cpi1dy1 = 0. In particular, the ground-state solution is not of the simple
form

s = ao,oy = bopy u= Copy V= dopy (72)

as it is for the two radial Dirac equations. This is perhaps to be expected, since in the Dirac
case there are only two functions, sagndz, and four unknowns to be determined, namely
bo/ao, y, a and E. Since the two coupled radial Dirac equations yield four equations
(the coefficients ofp” and of p¥ 1), it is not surprising that a solution is obtained. In the
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present case, we have four coupled radial equations (56)—(59), which yield eight equations
(the coefficients ofo” and of p¥ 1) to be satisfied by the six unknowns of the proposed
solutions (72), namelyy, co, do, ¥, a and E. Thus the system is overdetermined and

no solution of the form (72) is possible. This situation persists for any solution of the
form (62)-(65) where the polynomials all terminate at the same degree. Thus, the radial
equations (56)—(59) must be solved numerically.

Before proceeding to do so, we recall that in the conventional QED approach no exact
two-fermion eigensolutions oflcorp have been obtained, though perturbative results are
available. In analogy to the one-fermion case (section 2) we expect that for small values of
«a, the eigenvalue® (@) obtained from (56)—(59) should agree with the two-fermion results
obtained by the conventional perturbative approach. These conventional perturbative results
are [2,3,11]:

pt Maz
E (a):m1+m2—?+AE (73)
where AE = AEx + AE( is the Qua?) relativistic correction, made up of corrections to
the nonrelativistic kinetic and Coulomb potential energies respectively. The kinetic energy

correction has the well known form
1 1 1 2 3
AEx=——o*u* |l =+ =) [—-— " — " ). 74
K 24 H (mf + mg) ((2l+1)n3 4n4) (74)

The Q@*) Coulomb energy correction has been worked out previously fo/tee0 and
J = 1 states [3, 11], and has the form

b 3.4
AEc=-""0 (75)
n
where
1/1 1
po_1(1 1 76
2 (mf + m%) (76)
for the 0-(1Sp) states (and for the X3S;) states), while
1/1 1
b=—-|—5+— 77
6 <m§ + m%) (77)

for the OF(3P,) states.

In comparing our numerical results for thé @tates with the above @*) results of
conventional perturbation theory we find, as is pointed out in more detail below, that they
are in agreement whem <« 1 for all values ofm; andm,. Indeed, fora = 1%,7 our
numerical results are identical to the perturbative ones to at least 12 decimal places for all

the values ofn,/m; (0 < mo/my < 1 in practice) that we tried. To put it another way, the

ratio
o
Emlmeric —\mi1+mz— ﬁ /AE

approaches unity with decreasiagand ate = 1%7 it deviates from unity by less than 0.001

in all cases that were tried. This emphasizes the fact that the present exact eigenenergies
are in agreement with the energies obtained in conventional CQED perturbation theory to
at least Quo%).
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For the numerical integration of equations (56)—(59) it is useful to reduce them to a set
of two coupled equations by noting that if we subtract equation (59) from (56), we obtain
the relation

my+my+V —E €+ (afr)
v=— s = s (78)
my+my—V+E 2(my +mp) + &+ (a/r)
whereV = —a/r, E = m1 +my + ¢, ande < 0 for bound states. Similarly, subtracting
equation (58) from (57) gives the relation
u_ml_m2+V—E _ 2mp+e+(afr) (79)

S mp—mi+V—E  2myi+e+ (afr)

or u =t in the limit of my = mo.

Equation (78) shows that(r) always has one more node thgi), namely at = —a/s.
This again emphasizes that there can be no solutions of the type (62)—(65) which terminate
at the same degree for all the radial functions. In the nonrelativistic lumit; 0, whence
e >~ —Iua?, equation (78) also shows thatr) is O(a?)s(r), that isuv(r) is the ‘doubly
small’ component.

Equations (78) and (79) can be used to eliminatand v from the four radial
equations (56)—(59) to yield the two coupled equations

dsz[K.g_R]s-q-P,t (80)
dp i
dt:—[KJrQ]szPss (81)
dp p
where
_ (m1 + mp)aa (82)
(x + Eap)([my + mz+ Elap + a)
(my — my)aa
= 83
e (o + Eap)([my — mz + Elap + a) (83)
P, = ([mz2 — m1 + Elap + a)([m1 + mz + Elap + ) (84)
2p(Eap + a)
P — ([m1+mz — Elap — a)([m1 — m2 + Elap + a). (85)
2p(Eap + a)

We solved equations (80) and (81) numerically using Maple and Fortran Runge—Kutta
programs, and the forms (62)—(65) (with= 0 in (68)—(71)) as a starting procedure at
p < a/Ea (sincea/Ea is the radius of convergence of the power series as is evident
from equations (80)—(85)). Some of these numerical results for the lowest-enegjutés
are listed in tables 1 and 2. Generally, we determi&d) to four decimal figures,
but for particular cases many more decimal figures were determined, as indicated in the
tables.

Figure 1 is a plot ofE/m versusa for the ground 0(n = 1, 'S, K = 1) and
the 0-(n = 2, 3Py, K = —1) states, in the equal-mass casg = my = m. The
numerical results are consistent with the critical value= 2, and with the conjectured
parity degeneracy af, for the Of states. We also plot the conventional perturbative results
(73), which are seen to follow the numerical results closelydo 1. Our numerical
Maple Runge—Kutta results giv€(a. = 2) = 0.587 73 for the lowest-energy 0'Sy) state
and E (o, = 2) = 1.110 22 for the lowest-energy@°Py) state.
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Table 1. E(a)/m? for the O~ (11Sp) state,my = mp = m.

o E(a)/m

0.05 1.9993752878132
0.1 1.997504 4420128
0.5 1.939228664 1727

0.7 1.8825
0.8 1.8474
0.9 1.8076
1.0 1.762968 217 2291
11 1.7132
1.2 1.6579
1.3 1.5965
14 1.5279
15 1.450894 2141747
1.6 1.3634
17 1.2618
1.8 1.1390
1.9 0.9771
1.95 0.8623
1.98 0.7607

2.0 0.5877303936741

a E”’(a)/m =2 %az + 6—340[4 in this case.

Table 2. E(a)/m for the O (23Py) state,ny = ma = m.

o E(@)/m EP'(a)/m

0.5 1.9839 19839
0.7 1.9674 1.9676
0.75 1.9623 1.9625
1.0 1.92855 1.9300
1.25 1.8778 1.8841

15 1.7989
1.7 1.6965
1.9 1.4989
1.97 1.3422
1.99 1.2503
1999 1.1564

2.0 1.11022

a ppt _o_ 1.2 23 4; i
EPN(a)/m =2 — fga 302" in this case.

Figures 2 and 3 are plots of the unnormalized reduced radial wavefungtiona (r) =
t(r) andv(r) = —[(2m — (a/r) — Els()/[(2m + (a/r) + E] in the equal-mass limit,
for the lowest-energy On = 1'S)) state, whene = 1 and aa, = 2 respectively.
For « = 1 we note thats(r) and ¢(r) are Dirac-like, with7(r) >~ O((«¢/2)s(r)) and
both functions are nodeless for the ground state. Howeveyr does have a node at
r=a/2m — E ~ 422(1/m), andv(r) ~ O((a/2)%s(r)), that is it is the ‘doubly small’
component. Fote = «, = 2, figure 3 shows that(r = 0) = —t(r = 0), since
vv/1— (a/2)2 = 0, as occurs also in the Dirac case. (Recall that for the Dirac case at
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1.2 F 1.2
-]
+
1.07 F1.0
o
[+
0.8 o F 0.8
=
0.6 ° F0.6
0.4 F 0.4
1 WL 1 T T T
0.0 0.5 1.0 1.5 2.0 2.5

Figure 1. E(«)/m versusa for the equal mass lowest energy @ = 11Sy) state (numerical
result: open circles; perturbative result: full curve) and/0= 23P;) state (numerical result:
plus signs; perturbative result: broken curves) statB¢e, = 2)/m = 0.58773 for 0" and
E(a. =2)/m = 111022 for 0",

aoe. =1, E =0 ands(r) = —t(r) = e ™ for the ground state.) The single nodeuitr)
occurs atr ~ 1.416(1/m) whena = 2.

A plot of the reduced radial wavefunctions for the lowest energy:G= 23P;), K = —1
state atex = 1 is given in figure 4. In this casgr) is nodeless, but the ‘small’ component
t(r) has one node, as does the ‘doubly small’ compone@t). It is straightforward to
generate solutions for the:; = m,, 0F cases for the higher-energy states. One such
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-
\\\\\

Figure 2. Reduced radial wavefunctions for theg = m> = m 0~ (n = 11S) ground state for
a=1,E/m=1762968.s5(p): full curve;t(p): broken curvep(p): chain curve.p =r/a,
wherea = 2.117 681/m).

example, for the first excited'@n = 3°3Py) is plotted in figure 5 for the case = 2, for
which E/m = 1.744 95. Note that(r) has two nodes, while(r) has one and(r) has three
nodes in this case. In addition() is actually larger than(r) at this extreme relativistic
limit « = a. = 2, where the 0 state is quite unlike the nonrelativistic= 3°P; state.

The numerical solution of then; # m, cases is equally straightforward, and
we computed E(a)/m, for various mass ratios, among them,/m; = % 1 1

2° 4° 10’

ma/my = my,/m, = 0.05945..., my/my = m./m, = 0.000544617.., andmy/m1 =
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0.61 0.6
0.4 0.4
0.2 0.2
0.0 o 0.0
~0.2" -0.2
-0. 4 4 -0.4
-0.61 -0.6

Figure 3. Same as figure 2 but far = 2, E/m = 0.587 730 and: = 1.046 191/m).

m./m(Au*®) = 0.276 x 10°5. Some of these numerically determinét/m; versusa
values are listed in table 3 and plotted in figure 6 for the ground®)) case. We do not

plot the perturbative results of equation (73) in figure 6 to avoid crowding. In any case
the perturbative approximations are virtually indistinguishable from the numerical on this
graph fora < a./2. Recall that the analysis of the asymptotic behaviour of the bound state
J = 0 wavefunctions yielded the constrait,; — m»| < E(a) < m1 + my on the mass

M, = E(x) of the two-body system (61), while the analysis of the smdlehaviour of the
wavefunctions yielded the constraimt< 2 (66). Our numerical results are consistent with
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[
T
'

—

Figure 4. Same as figure 2 but for the lowest energy(® = 23P;) state, witha = 1,
E/m = 192855 andz = 3.774961/m).

these analytical constraints. Thus, the @dial equations have normalizable ground-state
solutions only forjmi —m»| < E(a) < my+my, and for most values ofi,/m1 the critical
values ofa = «, beyond which the solution ceases to be acceptable as representing bound
states occur whel (o) = |[m1 — my|. For E < |my — m»|, a becomes imaginary; = ib,

which implies that () behaves as#”. Indeed we find that the numerical solutions do have

an oscillatory behaviour foE < |m1 — m»|. Formi = m, the numerical results indicate

that the critical coupling occurs at the other constraint boundary, nhamely=atx. = 2,

for which E(«.) # |m1 — m2| = 0 but has the valué& (e, = 2) = 0.5877.
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1.0

-2.04

8
Figure 5. Same as figure 2 but for the first excited @ = 33Pg) state, witha
E/m = 174495 anth = 2.046 4171/ m).

Table 4 gives a list of values of. for variousm1/m5 ratios, obtained from the numerical
solutions. We note that. = 2 whenm; = my, but decreases towards 1 mag/m, — O.

= 2,

This is consistent with the Dirac value of. = 1. Nevertheless, for real one-electron
atoms, the present, higher critical valuegf > 1 (Z > 137) is a slight reprieve of the

Z = 137 Coulomb ‘catastrophe’ of the Dirac equation, since no nuclei are infinitely heavy.
Furthermore, for high£ one-electron atoms this critical value would be pushed even higher
and Reinhardt [14].

by finite-size effects of the nucleus, as pointed out already for the Dirac case by Greiner

6833
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Table 3. E(a)/m> for the 0" (11Sy) state,my # mo.

a mi/may=3% mi/mp=7% mi/my=
0.1  1.49833 1.2490 1.099 54
05  1.45916 1.2250 1.08831
0.8  1.3967 1.18545 1.06863
1.0  1.3387 1.1477 1.0486
1.2 1.2659 1.0992 1.0212
14 11752 1.0370 0.98346
1.6  1.0593 0.9551 0.92948
1.8  0.8992 0.8376

1.9 0.78212

1.95 0.69807

o 0.5° 0.75° 0.9°

a g, = 1.99993.

b . =1.89819.

¢ . = 1.68175.

Table 4. Critical values ofx such thatE («.) = |m1 — m>| for the ground state 0(1Sp).

ma E(ac) ‘ ma
e o G T
mi mi mi
1.0 2.0 058773

05 1.99993 05

0.25 1.89819  0.75

0.1 168175 0.9

M _ 0059455 157107  0.940545

me

Me _0544617x 1073 1.13004  0.999 455383
mp

% —0.276x 1075 1.041870  0.999997 24
m(AU

2 E(a.) # |m1 — mo| = 0 in this case.

7. Radial equations forJ > O states

For states with total angular momentum quantum number O the radial reduction of
equations (29)—(32) yields, in general, the eight coupled radial equations

J+1 J+1
(m1+m2+V—E)s1+A[—t1:|: . n—u)F ; u1i|

J J

J J J J
(mi+mpy+V —E)s)+ B ti+7l‘1:|:u/12|2;u1 +A|:téZFrt2—u,2:|:ru2i|=0 (87)

, _J+1 , _J+1
(ml—m2+V—E)t1+A|:SlIF " s1+v F " vl]

J J
+B —Sé + —sp = U/Z F-v2|=0 (88)
r r
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Figure 6. E(a)/m1 versuse for 0~ (n = 11S) and various mass ratiosnp/my = 1 (full
curve), 3 (broken curve),} (chain curve),s; (dash-double-dot curve).

A o d
(mi—mo+V —E),+ B —s1—7s1$v1:|:?v1 + A —S2:F7S2+U2:|:?U2 =0

(89)

,_J+1 ,_J+1
(mz—m1+V—E)u1+A|:s1:|: p s1+vpF . v1i|

J J
+B :tsé F 52— l)/2 + —v | =0 (90)
r r
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o d T o
(mz—m1+V—E)u2+B|::|:s1:|:rsl—vl—rv1j|+A[s2:|:rsz—v2:|:rv2}=0

(91)
J+1 J+1

(—ml—m2+V—E)v1+A|:—t1:|: —: fn—uyF :_ ul]

J J

r r

N

(=mi—ma+V —E)z+ B | F0F —i+ui+ i

J J

r r

where

J+1 J
A=, * and B =,
2] +1 2] +1

while the upper sign/ = J andJ = J + 1 corresponds to the parit§ = —(—1)’ states,
and the lower sign/ = J + 1 andJ = J corresponds to the paritf = (—1)(—1)7*!
states. Note that if, = up = » = v, = 0 andJ = 0, then equations (86), (88), (90) and
(92) reduce to equations (56)—(59), while the remaining ones vanish identically.

We will not present numerical solutions of the radial equations/for O states in this
paper, however we shall make a number of observations about them, particularly in the
equal mass case.

The J > 0 coupled equations (86)—(93) also have the radial Dirac equations as their
limit if one of the masses becomes infinite. For example if weHet mj; + €, where
mi1 — oo, then equations (90)—(93) imply that, u», v1 andv, — 0, whereas (86)—(89)
combine and reduce to the two Dirac equations

(m2+V—e)G—F’+§F=o (94)
(cma+V—)F+G + G =0 (95)
r

where for the parityP = —(—1)’ (upper sign in (86)—(93)),
G = Asy — Bsy F=n
with « = —(J + 1), while
G = Bs1 + Asy F=-1
with « = J. For the parityP = —(—1)’*! (lower sign in (86)—(93)),

G=s F = At; — Bty
fork =(J +1), and
G=s F=—-—Bh — At
for « = —J. Equations (86)—(93) reduce similarly to radial Dirac equations in the case

mo — OQ.
In the nonrelativistic limit, if we seff = m; + m> + ¢ and assume that

tivui .
L L =12
y 0(2(m1+m2)) (=12 (96)
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are negligible, then equations (86)—(93) can be solvedsfow; in terms ofs;, and
so eliminated, to yield the expected reduced radial &tlihger equation for the large
component;:

(V — E)Si - } <1 + 1) |:Sl-” — l(l + 1)S,‘:| =0 (97)

2\m1  my r2

where! = J for both s; and s, if the parity isP = —(=1)7, but! = J + 1 for s; and
1 = J —1 for s, if the parity is P = —(—1)’*1. In short the radial equations for thie> 0
states also have the expected one-fixed-fermion and nonrelativistic limits.

For the Coulomb potentiaV (r) = —a/r, the critical values of = |q142|/4m, beyond
which the radial equations cease to have real solutions, can be inferred for some cases (as
also for theJ = 0 equations, and for the Dirac equation), by considering solutions such that
m; — 0, E — 0, ands;, t;, u;, v; are constants. It is easily verified that equations (86)—(93)
have such solutions for two sets of valuesxf namelyaf = 4(J? + J + 1) (this includes
the J = 0 case discussed in section 6) arfd: 47(J +1).

The eight radial equations (86)—(93) fér> 0 can be reduced to a smaller number in
the case of equal masses; = m, = m. Thus, for the parityP = —(—1)’ states, they
reduce to two sets, one for the singl&i,() states and one for the triplet);) states. For the
singlet states,(r) = va(r) = 0, 11(r) = u1(r) andeo(r) = u2(r), so that equations (86)—(93)
become

J+1 J
@2m+V —E)s1+2A (—ti I t1> + 2B (té - tg) =0 (98)
r r
J+1 J+1
(V—E)l1+A<S/1—+S1+U/1— + U1> =0 (99)
r r
s ,J
(V—-—E),+ B <—Sl— —81 — V] — U1> =0 (100)
r r
where
2m+V - E
= . 101
v1(r) o —V & Esl(r) (101)

For the triplet states, on the other handy) = vi(r) = 0, u1(r) = —t1(r), u2(r) = —t2(r)
and equations (86)—(93) reduce to

J+1 J
2m+V — E)s, +2B (l‘i + + tl) + 2A (lé — l‘g) =0 (102)
r r
J+1 J+1
(V- E)y+ B <_s; R S v2> ~0 (103)
r r
/ ] ! J
(V—E)tr+ A (—SZ— —S52+ vy + U2> =0 (104)
r r
where
2n+V — E
v2(r) = m52(7)~ (105)
For the triplet, parityP = —(—1)’*! states, the reduction of the eight coupled radial

equations (86)—(93) whem; = m» is not as substantial. Evidently, ifi; = m5, (88)

and (90) imply thatui(r) = t,(r), and (89) and (91) imply that,(r) = —#(r), so that

the number of equations is reduced to six. The reason for the relative complexity is the
coupling of the3(J+ 1); and3(J— 1), states which occurs in this case.



6838 J W Darewych and L Di Leo

8. Discussion

There are many versions of coordinate-space two-fermion Dirac-like equations with
electromagnetic interactions, dating back to the work of Breit [15,16]. Somewhat
surprisingly, the full radial reduction of such equations seems not to have appeared in
the literature until 1982, when it was done by Childers [25] in his discussion of the two-
body Dirac equation for semirelativistic quarks. Examples of other recent discussions are
those of Geigeet al [17], Barut andUnal [18] and Sazdjian [19], and citations therein.
The most directly relevant for our purposes are the works of Malenfant [20] and S edtt

[21], who deal with Coulomb interactions only (as we do) and who derive coupled radial
equations similar to ours. Our approach differs from these works in that we derive the
two-fermion equation quantum-field theoretically. Nevertheless, for the equal mass case,
which is the only case explicitly considered by these authors, our radial equations are the
same as theirs. This is not surprising, since the two-fermion equations considered in both
works [20, 21] are sums of free Dirac Hamiltonians with a purely Coulombic interfermion
potential, acting on a 16-component wavefunction. They are, in essence, Breit equations
with only the Coulomb interaction retained. Thus, the physical content of their equations
is the same as that of ours, given that our ansatz (20) is sensitive only to the Coulomb
interaction part of the QED Hamiltonian.

Since the formalism and notations are different in these works, we might mention
the specific correspondence. Our equal mass, pdtity= —(—1)’ singlet state radial
equations (97)—(100) are the same as Malenfant’s equations ([20], (21)), with the
identifications; = P, v1 = R, 11 = —iQ4 and#, = —iQ_, where Malenfant's notation
is given on the right. These equations are also the same as& @it equations ([21],
(2.10)), with the identificatiorsy; = rRy, 11 = rRo, t = rR5 andv; = rR3, where the
Scott et al notation is given on the right. For the = —(—1)” triplet states our radial
equations (101)—(104) are the same as Malenfant’'s equations ([20], (23)) anceiSaksit
equations ([21], (2.12)). The correspondenceis P,v, = R, t; = —iQ, andf, = —iQ_
(Malenfant), ands, = r Ry, t1 = —r Ry, t» = —r R andv, = —r Rz (Scottet al). There is
a similar correspondence among the pafty= —(—1)’*? triplet equations.

Malenfant does not give explicit numerical solutions in his paper [20], while S&ta@tt
[21] give results fotn, = my anda = %7 only. They quote energy eigenvaluBsx — %7)
to 18 decimal figures, for = 1, 2, 325*1L, states (in the nonrelativistic designation), which
they obtained using the finite element method. In our Runge—Kutta calculations we have
generally retained not more than 14 significant figures. However, as a check we calculated
the ground-state energy to 18 figures and obtained the identical result aeSabf{21],
namelyE,, /m = 1.999 986 680 297 077 760.

Fora « 1 the numerical two-fermion Coulomb QED energy eigenvalues whega m»
are in excellent agreement with conventional perturbative results {&//B)y= AEx + AEc,

with
1 2 3
AEg = ——ma*( -~ — = 106
K= 716" ((21+1)n3 4n4) (106)
and
1 1
AEc = ——bma* = (107)
8 n3

whereb = —1 for the 0+ (*S) and T~ (Py) states,b = 3 for 0v*(Py), b =  for
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17+ 3Py) andb = 0 for the 1~ (*P;) states. Equations (105) and (106) yield

AE 3 23 5 7

ma® 64 3072 1024 3072

for the 07+ (11Sp), 0+ (23Py), 17+ (23Py) and 1~ (2'P,) states respectively. Note that for
anmj; = m, particle—antiparticle system the states are also charge conjugation eigenstates,
hence we have given theit’¢ designations above.

Thus, for the ground state, the conventional perturbative result from equations (105)
and (106) isE%'/m = 1.999 986 680297 163 899., which is the same as the numerical
result to 12 decimal figures. Indeed, at this low value aof= 1%7 the numerical
energy eigenvalues agree with the perturbative values to an increasingly larger number
of decimal figures for the higher-energy states. For example, Sxto#tl [20] give
E(n = 23%Pg)/m = 1.999996 670019 771 708, as compared to the perturbative result ((105)
and (106)) ofE?'(n = 23Py)/m = 1.999996 670019 771 893.. These are identical to 15
decimal figures. In the case of the= 2°3P; state the numerical and perturbative results
differ by one in the eighteenth decimal figure.

In comparing our two-fermion Dirac-like equation results (in which the negative-
energy components are retained and the vacuum is empty) to the lowest-order conventional
Coulomb QED results [3,11] (in which the negative-energy components are effectively
projected out, and the vacuum is a Dirac ‘filled negative-energy sea’), we note the following.
The results are very similar at low (indeed the energy eigenvalues are the same(@d)Q
but they are rather different for highar The difference in the highly relativistic limit can
be seen very clearly by comparing the critical valuea .ofn the equal mass case, the lowest
energy O states have. = 2 in the present formalism, but = 87/(4+ 7%) = 1.812...in
the lowest-order conventional formalism [11]. The disagreement at digh we believe,
due to the severe truncation of the infinite chain of Fock states that has been done in
the quoted conventional CQED studies. In analogy to what happens in the one-fermion
(m1/m — 0) limit, we expect that the two set of results would be the same if it were
possible to keep all orders in the conventional approach.

We do not compare the present results to the observed spectra of systems such as
wte™ and e e since we have dealt here only with part of the QED Hamiltonian (the static
Coulomb part). The inclusion of transverse photon effects, which have been neglected in this
work, is a straightforward matter, at least at the perturbatige*Oevel in the conventional
approach [11, 13]. This then brings the predicted energy levelsoritd’) agreement with
the observed spectra for systems suclvas™ and € e [4-8, 25]. However, the inclusion
of the transverse photon interaction (7) in a non-perturbative, rigorously variational way
remains an outstanding problem.

Finally, we point out that the generalization of the present formalism to a three-
fermion Dirac-like system with purely Coulombic interactions, is straightforward, at least
in principle. It is only necessary to replace the two-particle ansatz (20) with a three-particle
one [23, 24]:

13) = f &Px &y &2 Fupy (. y. 2) ¥, ()Y} (0)8)(2)10) (108)

Of course, the reduction of the resulting system of equations to radial form is much more
complicated, and even then one is left with the full complexity of a three-body problem.
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9. Summary

We have shown that the Coulomb QED Hamiltonian has exact Dirac-like few-particle
eigenstates, which are just the usual Dirac states in the one-body case. In the case of two
bodies, the states are described byxaddmatrix Breit-like equation, with purely Coulombic
interfermion interactions. The two-fermion equation has the usual Dirac equation as its one
particle limit (when one of the fermion masses is infinite). It has the @lthger equation

for the relative motion of the two particles as its nonrelativistic limit.

We determined the form of the 4 4 eigenmatrices for specifi¢? states. This led
to a simple and straightforward radial reduction of the two-fermion matrix equation. The
resulting radial equations have the radial Dirac equations as their one-body limit. These
radial equations are also shown to be equivalent to other radial reductions of two-fermion
equations with purely Coulombic interactions [20, 21].

We solved the radial equations numerically for a number bf= 0* states, for various
combinations of the masses; andm, of the two fermions, and various strengths of the
couplinga = |q192|/4m, whereq, and g, are the charges of the two fermions. For low
a our numerical solutions for the eigenenergies are in agreement with previously obtained
O(a*) conventional perturbative solutions [3,11]. Our numerical results also agree with the
only other accurate numerical results that we know of, namely those of &catt[21],
who have published solutions for the equal mass cases m, for o = %7

Our numerical results for the energy eigenvalues as a functien éf(«), for various
values of the ratiosni/m,, show thatE(«) has a Dirac-like behaviour. That i («)
starts out with the non-relativistic form + m, — ua?/2n? for « — 0 and then decreases
monotonically toE («.) > |m; — my| asa reaches a critical value.. We find thate, = 2
for m1/m, = 1 but decreases monotonically with decreasingm, to the Dirac-Coulomb
value . = 1 asmqi/mp — 0. The results thatt, < 2 andE > |m1 — m»| are also
obtained analytically from an analysis of the smalind asymptotic behaviour of the radial
wavefunctions (cf (66) and (61)). Lastly, our numerical results indicate a parity degeneracy
of a. = 2 whenm, = m, for the 0" and 0" states (which start off, at low, as'S, and
3Py states respectively).
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