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Abstract. We point out that the Coulomb part of the QED Hamiltonian in the Coulomb gauge
has exact two-fermion eigenstates, provided that the wavefunction satisfies a Dirac-like (or
Breit-like) equation. This equation, which describes the relative motion of a system of two
fermions of massesm1 andm2 and chargesq1 and q2 interacting via the Coulomb potential,
is shown to reduce to the usual Dirac eigenvalue equation when one ofmi is taken to be
infinite. For specificJP states of the two-fermion systems, the equation is reduced to coupled
radial equations. Numerical solutions for the mass spectrumE(α) of the two-fermion system
as a function of the coupling constantα = |q1q2|/4π are obtained for O± states for various
combinations ofm1 andm2. We find that the ground-state energy of the two-fermion system has
normalizable bound-state solutions for 06 α 6 αc, whereαc = 2 for m1 = m2, but decreases
towards the one-particle Dirac result ofαc = 1 as one of the particle masses tends to infinity.
Our numerical results forE(α) are in agreement with conventional perturbative O(α4) results if
α � 1. Comparison is made with other radial reductions of two-fermion equations with purely
Coulombic interactions.

1. Introduction

It has not been possible, to date, to write down exact two-particle eigensolutions of the
QED Hamiltonian. However, it is possible to obtain such eigensolutions for a non-trivial
portion of it, in the Coulomb gauge. In the present paper we consider eigensolutions for
the Coulomb QED Hamiltonian, that is the Hamiltonian of quantum electrodynamics in the
Coulomb gauge, but for which the transverse-photon part of the interaction is effectively
turned off.

The QED Hamiltonian density for two different fermionic fieldsψ(x) andφ(x), in the
Coulomb gauge, can be written as (we use the conventions of [1] with ¯h = c = 1):

HQED = Hψ + Hφ + HC + HT + Hγ (1)

where

Hψ = ψ†(x)h1(x)ψ(x) (2)

Hφ = φ†(x)h2(x)φ(x) (3)

with

hi(x) = −iα · ∇ +miβ + qiφc(x)− qiα · Ac(x) (4)

HC(x) = 1

8π

∫
d3y

ρ(x)ρ(y)

|x − y| (5)
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with

ρ(x) = q1ψ
†(x)ψ(x)+ q2φ

†(x)φ(x) (6)

HT (x) = −q1ψ
†(x)α · A(x)ψ(x)− q2φ

†(x)α · A(x)φ(x) (7)

and

Hγ (x) = 1
2Ȧ2(x)+ 1

2[∇ × A(x)]2. (8)

In these equationsmi , qi (i = 1, 2) are the masses and charges associated with the fermionic
fieldsψ andφ, and we have included the possibility that there is also an external classical
c-number field, specified by the potential functionsφc, Ac. The spinor-field amplitudes
ψ , φ are, of course, operators in the quantum theory and they satisfy the usual canonical
anticommutation relations. The non-vanishing ones are

[ψα(x, t), ψ
†
β(y, t)]+ = δαβδ

3(x − y) (9)

[φα(x, t), φ
†
β(y, t)]+ = δαβδ

3(x − y) (10)

while all others vanish including, in particular,

[ψα(x, t), φ
†
β(y, t)]+ = 0. (11)

By the Coulomb QED Hamiltonian,HCQED, we mean the one in which the transverse-
photon part of the interaction,HT of (7) is ‘turned off’, that is, dropped altogether. This
allows one to write down some exact solutions to the resulting field theoretic ‘Schrödinger’
equation

HCQED|f 〉 = E|f 〉 (12)

where

HCQED =
∫

d3xHCQED(x, t) (13)

and

HCQED = Hψ + Hφ + HC. (14)

Henceforth, we shall consider the model theory defined by the Hamiltonian (13), which
does not contain any dynamical (transverse) photons, that isHT is set to zero andHγ is
decoupled. Note that a consequence of the dropping ofHT is that the resulting model is
not covariant.

2. Empty vacuum and one-fermion states

We define an empty vacuum state|0̃〉 such that

ψ(x)|0̃〉 = φ(x)|0̃〉 = 0. (15)

Note that|0̃〉 is not the usual Dirac vacuum state,|0〉, of QED, that corresponds to a filled
negative-energy sea [1, pp 58–9]. Rather|0̃〉, as defined in (15) contains no positive-
energy fermions nor a filled sea of negative-energy fermions. The definition (15) means
that we are not following the conventional QED approach, in which only the positive
frequency part of the spinor-field operators annihilates the Dirac vacuum. Thus, as we
show below, we shall be dealing with coordinate space Dirac-like equations, with positive-
and negative-energy states, instead of projected momentum-space equations with positive-
energy particle and antiparticle states, as happens in the conventional approach. The choice
of the unconventional vacuum enables us to write down exact eigensolutions of the Coulomb
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QED Hamiltonian, :HCQED :. By contrast, in the conventional approach only approximate
solutions, primarily perturbative approximations, have been obtained (e.g. [2, 3, 11, 13]).
However, the choice of the empty vacuum means that dynamical pair-creation effects
(loops), such as vacuum polarization, are not present in this formalism.

Since we shall not be interested here in infinite self-energy questions, we shall work
with a normal-ordered form ofHCQED in which all our annihilation operatorsψ(x) and
φ(x) stand to the right of the creation operatorsψ†(x) andφ†(x). This normal ordering is
achieved as usual in conformity with all the commutation relations (9)–(11). But we stress
that this is not identical to the normal ordering of conventional QED [1, p 60] sinceψ , φ
are not the conventional annihilation operators. Thus, our normal-ordered form ofHC (cf
(5)) is

: HC := 1

8π

∫
d3x d3y

|x − y| [q2
1ψ

†
α(x)ψ

†
β(y)ψβ(y)ψα(x)+ q1q2ψ

†
α(x)φ

†
β(y)φβ(y)ψα(x)

+q2q1φ
†
α(x)ψ

†
β(y)ψβ(y)φα(x)+ q2

2φ
†
α(x)φ

†
β(y)φβ(y)φα(x)] (16)

whereα, β = 1, 2, 3, 4 and summation on repeated indices is implied.
With the above conventions, we note that the state

|1〉 =
∫

d3x Fα(x)ψ
†
α(x)|0̃〉 (17)

is an eigenstate of :HCQED : with eigenenergyE1, provided that the four coefficient
amplitudesFα(x) are solutions of

{[h1(x)]αβ − E1δαβ}Fβ(x) = 0 (18)

or

(h1(x)− E1)F (x) = 0 (19)

in matrix notation, that is provided the spinorF is a solution of the usual Dirac eigenvalue
equation (19). We see, therefore, that the exact one-fermion eigenstate (17) leads to the
usual Dirac equation with all its well known negative energy ‘pathologies’. That is, (18) or
(19) has positive-energy solutions withE = m1 + · · · as well as negative-energy solutions
with E1 = −m1 + · · ·. We shall refer to|1〉 as a one-Dirac-particle eigenstate, toψ†(x) as
a Dirac-particle creation operator, and toψ(x) as the corresponding annihilation operator.
By ‘Dirac particle’ we mean a particle state described by the full four-component spinor
solutionF(x) of the Dirac equation (19).

In the conventional approach no exact eigensolutions of :HCQED : analogous to the
simple form (17)–(19) are possible. The exact solution of the Coulomb problem in the
conventional approach involves an infinite chain of Fock states containing any number of
particle–antiparticle pairs (e.g. (22) of [22]). In practice, this chain must be truncated at
some finite order to allow for tractable solutions. Hardekopf and Sucher [2a], for example,
discuss such a lowest-order (‘no pair’) momentum-space equation. They point out that
its ground-state eigenenergy, which for small values of the coupling constantα has the
form E = m(1 − 1

2α
2 − 1

8α
4 + · · ·), agrees with the exact solutionE = √

1 − α2 of the
Dirac–Coulomb equation to O(α4), but not beyond. More generally, Guiasu and Koniuk
[22] have demonstrated that the well known solutions of the Dirac equation are the exact
solutions of the one-fermion Coulomb problem in conventional QED. To put it another
way, the exact solutions of the one-body Dirac–Coulomb equation (with its negative energy
‘pathologies’) is equivalent to retaining an arbitrary number of particle–antiparticle pairs in
the conventional field-theoretic approach to this problem. This remarkable property of the
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Dirac equation does not appear to be widely appreciated. In any case, since the one-fermion
Coulomb case has been analysed in detail [2a, 3, 22], as we have outlined, we shall not dwell
on it further. Instead, we shall proceed to the two-fermion problem.

3. Two-fermion eigenstates and two-fermion equation

We consider a two-Dirac-fermion state, that is a straightforward generalization of the one-
Dirac-fermion state (17), namely

|2〉 =
∫

d3x d3y Fαβ(x,y)ψ
†
α(x)φ

†
β(y)|0̃〉 (20)

whereψ , φ could be particle or antiparticle (charge conjugate) fields. We shall be interested
in bound states in what follows later, hence we will take one of the fields to be an antiparticle
(charge conjugate) field of opposite parity, corresponding to a system like e−µ+.

The state (20) is an eigenstate of :HCQED : with eigenenergyE, provided that the 16
coefficient amplitudesFαβ(x,y) satisfy the equations

[h1(x)]αγ Fγβ(x,y)+ [h2(y)]βγ Fαγ (x,y)+ [V (x,y)− E]Fαβ(x,y) = 0 (21)

where

V (x,y) = q1q2

4π |x − y| . (22)

In matrix notation, whereF(x,y) = [Fαβ(x,y)] is a 4× 4 ‘bispinor’, equation (21) can
be written as

[h1(x)]F(x,y)+ [h2(y)F
T (x,y)]T + [V (x,y)− E]F(x,y) = 0. (23)

Equation (23) is a Dirac-like (or Breit-like) two-fermion Equation. In the absence of the
interfermion interactionV , it has solutions of the form

F(x,y) = F(x)GT (y) (24)

whereF(x) is a solution of the Dirac equation (19) andG(y) is similar to a solution of
the Dirac equation

(h2(y)− E2)G(y) = 0 (25)

whereE = E1 + E2.
We note that (21) can be derived by using the variational principle

δ〈2| : HQED − E : |2〉 = 0.

This is because, for〈0̃|A|0̃〉 = 0, the trial state|2〉 is insensitive to the transverse-photon
part of the QED Hamiltonian, (7), and so (21) follows directly.

For |2〉 to be an eigenstate of the momentum operator with eigenvaluePTOTAL = 0, it
is necessary that the bispinorF(x,y) be of the formF(x − y), whereupon, in the absence
of external classical fieldsφc, Ac, (23) becomes

[h1(r)]F(r)+ [h2(−r)F T (r)]T + [V (r)− E]F(r) = 0 (26)

wherer = x − y andV (r) = −α/|r| with α = |q1q2|/4π . Equation (26) is a Dirac-like
equation for the relative motion of two fermions of massesm1 andm2 and chargesq1, q2

interacting via a Coulomb potential.
It remains, therefore, to solve equation (26) to obtain an exact two-particle Dirac-like

eigensolution of the Coulomb QED Hamiltonian. Before reducing the 16 equations (26) we
shall consider some limiting cases.
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4. Nonrelativistic and one-particle limits of the two-fermion equation

Recalling that in 2× 2 block representation

h1(r) =
[
m1 σ · p

σ · p −m1

]
(27)

and writing

F(r) =
[
s(r) t (r)
u(r) v(r)

]
(28)

wheres, t, u, v are themselves 2× 2 matrices, it follows that equation (26) can be written
as

(m1 +m2 + V − E)s − (σ · ptT )T + σ · pu = 0 (29)

(m1 −m2 + V − E)t − (σ · psT )T + σ · pv = 0 (30)

(m2 −m1 + V − E)u+ σ · ps − (σ · pvT )T = 0 (31)

(−m1 −m2 + V − E)v + σ · pt − (σ · puT )T = 0 (32)

whereσi are the usual Pauli matrices. It is evident (for example, by settingV = 0) that
(26), or, equivalently, (29)–(32), have, like the Dirac equation, both positive- and negative-
energy solutions. Indeed, in this case, there are four kinds:E ' m1 +m2, E ' m1 −m2,
E ' −m1 +m2 andE ' −m1 −m2. We shall discuss only the positive-energy solutions,
of the typeE ' m1 +m2, in this paper.

We note, first, that if we setE = ε +m2 in (29)–(32), then divide through bym2 and
let m2 → ∞, we obtain the result thatt, v → 0 from equations (30) and (32), while the
remaining ones reduce to the usual Dirac equations,

(m1 + V − ε)s + σ · pu = 0 (33)

and

(−m1 + V − ε)u+ σ · ps = 0. (34)

We recall thats andu are 2× 2 matrices, so that the Dirac equations (33) and (34) hold
for each of the columns of these matrices separately. Similar Dirac equations are obtained
in the m1 → ∞ limit but with s replaced bysT , u by −tT andm1 by m2 in (33) and
(34). Thus the relativistic two-fermion equations (26), or (29)–(32), have Dirac one-particle
limits, a property which is held to be desirable for two-fermion equations [10].

For the nonrelativistic limit of the positive-energy solutions we writeE = m1 +m2 + ε
and assume that|(V − ε)v| � |(m1 +m2)v|. Then equation (32) implies that

v ' 1

2(m1 +m2)
{σ · pt − (σ · puT )T } (35)

or, in other words, thatv is O( p
mi
t,

p

mi
u). Similarly, therefore, to lowest order inp/mi ,

equations (30) and (31) yield the result,

t ' − 1

2m2
(σ · psT )T u ' 1

2m1
σ · ps. (36)

Substitution of (36) into (29) shows that, to lowest order inp/mi , s(r) (that is, each of its
four components) satisfies the usual Schrödinger equation,[

1

2

(
1

m1
+ 1

m2

)
p2 + V − ε

]
s(r) = 0 (37)

with well known eigenfunctions forV (r) = −α/r, and the corresponding eigenvalues
εn = −µα2/2n2, µ = m1m2/(m1 + m2), wheren = 1, 2, 3, . . . is the principal quantum
number.
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5. JP eigenstates and radial reduction

If the two-fermion state (20) is to be an eigenstate ofJ3 where

J =
∫

d3x ψ†(x, t)j(x)ψ(x, t)+
∫

d3x φ†(x, t)j(x)φ(x, t) (38)

with j(r) = l + s = −ir × ∇ + 1
2σ, then we require that the bispinorF (cf (23)) must

satisfy the equation

j3(r1)F (r1, r2)+ [j3(r2)F
T (r1, r2)]

T = mJF(r1, r2). (39)

In other words, in the frame wherePTOTAL|2〉 = 0|2〉, and using the notation (28), we
require that

l3(r)s(r)+ 1
2σ3s(r)+ 1

2s(r)σ3 = mJ s(r) (40)

wherer = r1 − r2 and l = r × p. The same equation (40) must be satisfied by the other
three components,t , u, v, of the bispinorF . In a similar fashionJ2|2〉 = J (J + 1)|2〉
implies that the bispinorF in the PTOTAL = 0 frame must satisfy the equation

(l2 + 3
2)F + l · σF + (l · σFT )T + 1

2σF · σT = J (J + 1)F (41)

and, indeed, sincel2 and l · σ are block-diagonal, each component,s, t , u, v, of F must
satisfy equation (41) individually.

For givenJ , mJ equations (40) and (41), for any components, t , u, v of F , have four
linearly independent eigensolutions of the formu(r) = u(r)ϕ(r̂), etc. We shall denote the
2 × 2 angular ‘bispinor harmonics’ byϕA(r̂), ϕ0(r̂), ϕ+(r̂), ϕ−(r̂). They are, explicitly
(M ≡ mJ ),

ϕA(r̂) = 1√
2
YMJ (r̂)

[
0 −1
1 0

]
(42)

ϕ0(r̂) = 1√
2J (J + 1)

[ √
(J −M + 1)(J +M)YM−1

J −MYMJ
−MYMJ −√

(J +M + 1)(J −M)YM+1
J

]
(43)

ϕ+(r̂) = 1√
2J (2J − 1)

[ √
(J +M − 1)(J +M)YM−1

J−1

√
(J +M)(J −M)YMJ−1√

(J +M)(J −M)YMJ−1

√
(J −M − 1)(J −M)YM+1

J−1

]
(44)

and

ϕ−(r̂) = 1√
2(J + 1)(2J + 3)

×
[ √

(J −M + 1)(J −M + 2)YM−1
J+1 −√

(J +M + 1)(J −M + 1)YMJ+1

−√
(J +M + 1)(J −M + 1)YMJ+1

√
(J +M + 1)(J +M + 2)YM+1

J+1

]
.

(45)

We note thatϕA is antisymmetric andϕ0,± are symmetric matrices. Furthermoreϕ0, ϕA

and ϕ± correspond to opposite parity becauseYML (−r̂) = (−1)LYML (r̂) and ϕ0, ϕA have
L = J whereasϕ± haveL = J ± 1. These four bispinor harmonics form an orthonormal
set, in the sense that

∫
dr̂ Tr(ϕ†

i ϕj ) = δij , wherei, j = A, 0,+,− and the integrations are
taken over the entire solid angle.

Lastly we point out that for the state|2〉 to be a parity eigenstate, the componentss, v,
of F must be of opposite parity to that of the componentst , u, i.e. if s(−r) = ±s(r) then
t (−r) = ∓t (r), etc. Taken all together, this means that for a state|2〉 of a fermion and an
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antifermion to be simultaneously an eigenstate ofJ2, J3, and parity, the bispinorF , (28),
must be of the form

F(r) = 1

r

[
is1(r)ϕA(r̂)+ is2(r)ϕ0(r̂) t1(r)ϕ

−(r̂)+ t2(r)ϕ
+(r̂)

u1(r)ϕ
−(r̂)+ u2(r)ϕ

+(r̂) iv1(r)ϕ
A(r̂)+ iv2(r)ϕ

0(r̂)

]
(46)

for −(−1)J parity eigenstates, and

F(r) = 1

r

[
is1(r)ϕ−(r̂)+ is2(r)ϕ+(r̂) t1(r)ϕ

A(r̂)+ t2(r)ϕ
0(r̂)

u1(r)ϕ
A(r̂)+ u2(r)ϕ

0(r̂) iv1(r)ϕ
−(r̂)+ iv2(r)ϕ

+(r̂)

]
(47)

for −(−1)J±1 = (−1)J parity eigenstates. Note that the parity assignments would be
interchanged for equations (46) and (47) if|2〉 were a state of two Dirac particles or two
Dirac antiparticles, rather than a Dirac particle–Dirac antiparticle state.

The radial functions in the bispinors (46) and (47) are solutions of the coupled radial
equations that are obtained by substituting (46), (47) into (26) (or, equivalently, into (29)–
(32)) and equating the coefficients of the four independent bispinor harmonics.

We make use of the following identities in carrying out the radial reduction:

σ · pf (r)ϕ(r̂) = −i
df

dr
σ · r̂ϕ(r̂)+ i

r
f (r)σ · r̂σ · lϕ(r̂) (48)

where ϕ(r̂) is any 2× 2 bispinor harmonic,f (r) a radial function, and̂r = r/r, and
l = r × p = −ir × ∇. In addition, we note the following useful properties of the above
bispinors harmonics:

σ · r̂ϕA = aϕ− − bϕ+ (49)

σ · r̂ϕ0 = bϕ− + aϕ+ (50)

σ · lϕA = f ϕ0 (51)

σ · lϕ0 = −ϕ0 + f ϕA (52)

σ · lϕ− = −(J + 2)ϕ− (53)

σ · lϕ+ = (J − 1)ϕ+ (54)

where

a =
√
J + 1

2J + 1
b =

√
J

2J + 1
and f =

√
J (J + 1). (55)

It is evident from equations (46) and (47) that, in general, eight coupled radial equations
are obtained, for arbitraryJ > 0.

6. Radial equations for theJ = 0 states and their solution

For theJ = 0 states, namely the 0−(1S0) and 0+(3P0) states, only two linearly independent
bispinor harmonics arise, namelyϕA andϕ− ((42) and(45)), and sos2 = t2 = u2 = v2 = 0 in
(46) and (47). (Here, as elsewhere, we give in brackets the nonrelativistic limit designation,
2S+1LJ , corresponding to theJP state in question.) Thus there is only one set of four
coupled radial equations for each of 0−(1S0) and 0+(3P0) states:

(m1 +m2 + V − E)s − t ′ − K

r
t − u′ − K

r
u = 0 (56)

(m1 −m2 + V − E)t + s ′ − K

r
s + v′ − K

r
v = 0 (57)

(m2 −m1 + V − E)u+ s ′ − K

r
s + v′ − K

r
v = 0 (58)



6824 J W Darewych and L Di Leo

(−m1 −m2 + V − E)v − t ′ − K

r
t − u′ − K

r
u = 0 (59)

wheret ′ = dt/dr, etc, whileK = +1 for the 0− andK = −1 for the 0+ states.
If we letE = m1+m2+ε, and assume that|(V −ε)s| � mi |s|, etc, in the nonrelativistic

limit, then, neglecting alsov ' O(t/mi, u/mi) in equations (57) and (58), we find that
equation (56) reduces to the expected radial Schrödinger equation,

(V − ε)s − 1

2

(
1

m1
+ 1

m2

) (
s ′′ − K(K − 1)

r2
s

)
' 0. (60)

On the other hand, if we writeE = m1 + ε and letm1 → ∞, then equations (58) and (59)
imply that u, v → 0 while (56) and (57) reduce to the usual radial Dirac equations fors

and t . Note thatK = 1 corresponds to theJP = 0−(1S0) states (withL = S = J = 0)
and K = −1 corresponds to theJP = 0+(3P0) states (withL = S = 1, J = 0) in
equations (56)–(59), whereas in the Dirac limitK = 1 corresponds toj+ 1

2 with j = s = 1
2

and l = 0 (the 2s1
2

states), whileK = −1 corresponds to−(j + 1
2) with j = s = 1

2, l = 1

(the 2p1
2

states). Similarly, ifm2 → ∞, equations (56)–(59) reduce to the radial Dirac
equations fors andu, while t, v → 0. In short the coupled radial equations (56)–(59) have
the expected nonrelativistic and one-fixed-particle limits.

We have not been able to determine solutions to the coupled radial equations (56)–(59)
in terms of common analytic functions. It is of interest, therefore, to consider the properties
and general behaviour of the solutions before commencing with numerical solutions.

We anticipate that, asα increases, the eigenenergy spectrumE(α) of equations (56)–
(59) will have a qualitative behaviour similar to that of the Dirac spectrum, namely that
E(α) decreases monotonically fromE(α = 0) = m1 + m2 until α hits a critical value
αc, beyond whichE(α) ceases to be real. It is possible to infer the value ofαc, at least
for some cases, by considering the ultra-relativistic limit,p → ∞, in which case we can
neglect the massesm1 andm2, and seek solutions of (56)–(59) withE = m1 = m2 = 0.
equations (56)–(59) then have the (non-normalizable) solutionst = u, s = v, |t | = |s| = 1
(i.e.F ∝ 1/r) for αc = 2|K| = 2. Note that this result implies a possible parity degeneracy
of αc. This is analogous to the behaviour of solutions at the critical point of similar
momentum-space equations [2, 9, 11–13], for which the momentum-space wavefunction has
E = m = 0 solutions of the corresponding formF(p) = 1/p2, at α = αc, and for which a
parity degeneracy ofαc is observed [11–13]. We might mention that the usual one-particle
Dirac–Coulomb equations have a similarE = m = 0, |F | = |G| = 1 solution atαc = |K|,
whereF andG are the reduced radial Dirac wavefunctions. These are the correct values
of αc for those states for whichE(αc) = 0, and even for those for whichE(αc) > 0.

For the Coulomb potentialV = −α/r, whereα = |q1q2|/4π , it is often convenient to
rescale the radial variable, that is to letρ = r/a, wherea is a suitable scale parameter. For
example, the radial functionss, t , u, v have the larger behaviours ∼ e−ρ , etc, for positive
energyJ = 0 bound states, wherea is given by

1

a2
= [(m1 +m2)

2 − E2][E2 − (m1 −m2)
2]

4E2

−→
m1 = m2, m

2 −
(
E

2

)2

. (61)

Note that (61) implies thata is real only for |m1 − m2| 6 E 6 m1 + m2, which means
that the bound state spectrum must lie in this domain. With the rescalingρ = r/a, (56)–
(59) become modified slightly, in thatr is replaced byaρ in all of them. For purposes
of numerical integration of the radial equations the scale parametera can be chosen to be
anything that is convenient, be it that given in (61), ora = 1 or a = 1/µα, or whatever.
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For a power-series analysis of the radial equations it is useful to make the replacement
s = s̄e−ρ , etc. Assuming solutions of the form

s̄ = ργ [a0 + a1ρ + a2ρ
2 + · · ·] (62)

t̄ = ργ [b0 + b1ρ + b2ρ
2 + · · ·] (63)

ū = ργ [c0 + c1ρ + c2ρ
2 + · · ·] (64)

v̄ = ργ [d0 + d1ρ + d2ρ
2 + · · ·] (65)

we find, upon substitution into the radial equations fors̄, t̄ , ū, v̄ and equating coefficients
of different powers ofρ, that the following occurs. The coefficients ofργ−1 yield four
coupled homogeneous equations for the parametersa0, b0, c0, d0, which have non-trivial
(and non-singular) solutions only if

γ =
√
K2 −

(α
2

)2
(66)

for any values ofm1, m2, whereupon

d0

a0
= 1

b0

a0

c0

a0
= − α

2(γ +K)
= 2(γ −K)

α
. (67)

The condition (66) implies that the radial equations have real bound state solutions of
the form (62)–(65) only forα 6 2|K| = 2, for any values ofm1 andm2. This, in turn,
implies thatαc 6 2 for the 0∓ states for any values ofm1 andm2. This condition for
bound states,α 6 2, is additional to the one that follows from equation (61), namely that
|m1 −m2| 6 E 6 m1 +m2.

The coefficients of the terms inργ+ν yield the recursion relations,

a(m1 +m2 − E)aν−1 − αaν − (γ +K + ν)bν + δbν−1 − (γ +K + ν)cν + δcν−1 = 0

(68)

(γ −K + ν)aν − δaν−1 + a(m1 −m2 − E)bν−1 − αbν + (γ −K + ν)dν − δdν−1 = 0

(69)

(γ −K + ν)aν − δaν−1 + a(m2 −m1 − E)cν−1 − αcν + (γ −K + ν)dν − δdν−1 = 0

(70)

(γ +K + ν)bν − δbν−1 + (γ +K + ν)cν − δcν−1 + a(m1 +m2 + E)dν−1 + αdν = 0

(71)

where δ = 1. These recursion relations can be used, with (66) and (67) to generate the
power series (62)–(65). Ifδ = 0 then (68)–(71) are the recursion relations for the power
series representations of the functionss(r), etc, rather than for̄s(r), etc. Such a series can
be used, for example, as a starting procedure for the numerical integration of the radial
equations (56)–(59).

Unlike in the Dirac case, the recursion relations (68)–(71) do not admit power series
solutions of the form (62)–(65), which terminate at the same power, sayν = n′, so that
an′+1 = bn′+1 = cn′+1dn′+1 = 0. In particular, the ground-state solution is not of the simple
form

s̄ = a0ρ
γ t̄ = b0ρ

γ ū = c0ρ
γ v̄ = d0ρ

γ (72)

as it is for the two radial Dirac equations. This is perhaps to be expected, since in the Dirac
case there are only two functions, says̄ and t̄ , and four unknowns to be determined, namely
b0/a0, γ , a and E. Since the two coupled radial Dirac equations yield four equations
(the coefficients ofργ and ofργ−1), it is not surprising that a solution is obtained. In the
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present case, we have four coupled radial equations (56)–(59), which yield eight equations
(the coefficients ofργ and of ργ−1) to be satisfied by the six unknowns of the proposed
solutions (72), namelyb0, c0, d0, γ , a andE. Thus the system is overdetermined and
no solution of the form (72) is possible. This situation persists for any solution of the
form (62)–(65) where the polynomials all terminate at the same degree. Thus, the radial
equations (56)–(59) must be solved numerically.

Before proceeding to do so, we recall that in the conventional QED approach no exact
two-fermion eigensolutions ofHCQED have been obtained, though perturbative results are
available. In analogy to the one-fermion case (section 2) we expect that for small values of
α, the eigenvaluesE(α) obtained from (56)–(59) should agree with the two-fermion results
obtained by the conventional perturbative approach. These conventional perturbative results
are [2, 3, 11]:

Ept(α) = m1 +m2 − µα2

2n2
+1E (73)

where1E = 1EK + 1EC is the O(α4) relativistic correction, made up of corrections to
the nonrelativistic kinetic and Coulomb potential energies respectively. The kinetic energy
correction has the well known form

1EK = −1

2
α4µ4

(
1

m3
1

+ 1

m3
2

) (
2

(2l + 1)n3
− 3

4n4

)
. (74)

The O(α4) Coulomb energy correction has been worked out previously for theJ = 0 and
J = 1 states [3, 11], and has the form

1EC = −bµ
3α4

n3
(75)

where

b = −1

2

(
1

m2
1

+ 1

m2
2

)
(76)

for the 0−(1S0) states (and for the 1−(3S1) states), while

b = 1

6

(
1

m2
1

+ 1

m2
2

)
(77)

for the 0+(3P0) states.
In comparing our numerical results for the 0∓ states with the above O(α4) results of

conventional perturbation theory we find, as is pointed out in more detail below, that they
are in agreement whenα � 1 for all values ofm1 andm2. Indeed, forα = 1

137, our
numerical results are identical to the perturbative ones to at least 12 decimal places for all
the values ofm2/m1 (0 6 m2/m1 6 1 in practice) that we tried. To put it another way, the
ratio [

Enumeric −
(
m1 +m2 − µα2

2n2

)] /
1E

approaches unity with decreasingα, and atα = 1
137 it deviates from unity by less than 0.001

in all cases that were tried. This emphasizes the fact that the present exact eigenenergies
are in agreement with the energies obtained in conventional CQED perturbation theory to
at least O(α4).
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For the numerical integration of equations (56)–(59) it is useful to reduce them to a set
of two coupled equations by noting that if we subtract equation (59) from (56), we obtain
the relation

v = −m1 +m2 + V − E

m1 +m2 − V + E
s = ε + (α/r)

2(m1 +m2)+ ε + (α/r)
s (78)

whereV = −α/r, E = m1 + m2 + ε, andε < 0 for bound states. Similarly, subtracting
equation (58) from (57) gives the relation

u = m1 −m2 + V − E

m2 −m1 + V − E
t = 2m2 + ε + (α/r)

2m1 + ε + (α/r)
t (79)

or u = t in the limit of m1 = m2.
Equation (78) shows thatv(r) always has one more node thans(r), namely atr = −α/ε.

This again emphasizes that there can be no solutions of the type (62)–(65) which terminate
at the same degree for all the radial functions. In the nonrelativistic limit,α → 0, whence
ε ' − 1

2µα
2, equation (78) also shows thatv(r) is O(α2)s(r), that isv(r) is the ‘doubly

small’ component.
Equations (78) and (79) can be used to eliminateu and v from the four radial

equations (56)–(59) to yield the two coupled equations

ds

dρ
=

[
K

ρ
+ R

]
s + Pt t (80)

dt

dρ
= −

[
K

ρ
+Q

]
t + Pss (81)

where

R = (m1 +m2)aα

(α + Eaρ)([m1 +m2 + E]aρ + α)
(82)

Q = (m2 −m1)aα

(α + Eaρ)([m1 −m2 + E]aρ + α)
(83)

Pt = ([m2 −m1 + E]aρ + α)([m1 +m2 + E]aρ + α)

2ρ(Eaρ + α)
(84)

Ps = ([m1 +m2 − E]aρ − α)([m1 −m2 + E]aρ + α)

2ρ(Eaρ + α)
. (85)

We solved equations (80) and (81) numerically using Maple and Fortran Runge–Kutta
programs, and the forms (62)–(65) (withδ = 0 in (68)–(71)) as a starting procedure at
ρ � α/Ea (sinceα/Ea is the radius of convergence of the power series as is evident
from equations (80)–(85)). Some of these numerical results for the lowest-energy 0∓ states
are listed in tables 1 and 2. Generally, we determinedE(α) to four decimal figures,
but for particular cases many more decimal figures were determined, as indicated in the
tables.

Figure 1 is a plot ofE/m versusα for the ground 0−(n = 1, 1S0,K = 1) and
the 0+(n = 2, 3P0,K = −1) states, in the equal-mass casem1 = m2 = m. The
numerical results are consistent with the critical valueα = 2, and with the conjectured
parity degeneracy ofαc for the 0± states. We also plot the conventional perturbative results
(73), which are seen to follow the numerical results closely forα . 1. Our numerical
Maple Runge–Kutta results giveE(αc = 2) = 0.587 73 for the lowest-energy 0−(1S0) state
andE(αc = 2) = 1.110 22 for the lowest-energy 0+(3P0) state.
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Table 1. E(α)/ma for the O−(1 1S0) state,m1 = m2 = m.

α E(α)/m

0.05 1.999 375 287 8132
0.1 1.997 504 442 0128
0.5 1.939 228 664 1727
0.7 1.8825
0.8 1.8474
0.9 1.8076
1.0 1.762 968 217 2291
1.1 1.7132
1.2 1.6579
1.3 1.5965
1.4 1.5279
1.5 1.450 894 214 1747
1.6 1.3634
1.7 1.2618
1.8 1.1390
1.9 0.9771
1.95 0.8623
1.98 0.7607
2.0 0.587 730 393 6741

a Ept (α)/m = 2 − 1
4α

2 + 3
64α

4 in this case.

Table 2. E(α)/m for the O+(2 3P0) state,m1 = m2 = m.

α E(α)/m Ept (α)/m

0.5 1.9839 1.9839a

0.7 1.9674 1.9676
0.75 1.9623 1.9625
1.0 1.928 55 1.9300
1.25 1.8778 1.8841
1.5 1.7989
1.7 1.6965
1.9 1.4989
1.97 1.3422
1.99 1.2503
1.999 1.1564
2.0 1.110 22

a Ept (α)/m = 2 − 1
16α

2 − 23
3072α

4 in this case.

Figures 2 and 3 are plots of the unnormalized reduced radial wavefunctionss(r), u(r) =
t (r) and v(r) = −[(2m − (α/r) − E]s(r)/[(2m + (α/r) + E] in the equal-mass limit,
for the lowest-energy 0−(n = 1 1S0) state, whenα = 1 and ααc = 2 respectively.
For α = 1 we note thats(r) and t (r) are Dirac-like, with t (r) ' O((α/2)s(r)) and
both functions are nodeless for the ground state. Howeverv(r) does have a node at
r = α/2m − E ' 4.22(1/m), andv(r) ' O((α/2)2s(r)), that is it is the ‘doubly small’
component. Forα = αc = 2, figure 3 shows thats(r = 0) = −t (r = 0), since
γ
√

1 − (α/2)2 = 0, as occurs also in the Dirac case. (Recall that for the Dirac case at
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Figure 1. E(α)/m versusα for the equal mass lowest energy 0−(n = 1 1S0) state (numerical
result: open circles; perturbative result: full curve) and 0+(n = 2 3P0) state (numerical result:
plus signs; perturbative result: broken curves) states.E(αc = 2)/m = 0.587 73 for 0− and
E(αc = 2)/m = 1.110 22 for 0+.

ααc = 1, E = 0 ands(r) = −t (r) = e−mr for the ground state.) The single node inv(r)
occurs atr ' 1.416(1/m) whenα = 2.

A plot of the reduced radial wavefunctions for the lowest energy 0+(n = 2 3P0),K = −1
state atα = 1 is given in figure 4. In this cases(r) is nodeless, but the ‘small’ component
t (r) has one node, as does the ‘doubly small’ component,v(r). It is straightforward to
generate solutions for them1 = m2, 0± cases for the higher-energy states. One such
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Figure 2. Reduced radial wavefunctions for them1 = m2 = m 0−(n = 1 1S0) ground state for
α = 1, E/m = 1.762 968. s(ρ): full curve; t (ρ): broken curve;v(ρ): chain curve.ρ = r/a,
wherea = 2.117 68(1/m).

example, for the first excited 0+(n = 3 3P0) is plotted in figure 5 for the caseα = 2, for
whichE/m = 1.744 95. Note thats(r) has two nodes, whilet (r) has one andv(r) has three
nodes in this case. In addition,t (r) is actually larger thans(r) at this extreme relativistic
limit α = αc = 2, where the 0+ state is quite unlike the nonrelativisticn = 3 3P0 state.

The numerical solution of them1 6= m2 cases is equally straightforward, and
we computedE(α)/m1 for various mass ratios, among themm2/m1 = 1

2,
1
4,

1
10,

m2/m1 = mµ/mτ = 0.059 45. . ., m2/m1 = me/mp = 0.000 544 617. . ., andm2/m1 =
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Figure 3. Same as figure 2 but forα = 2, E/m = 0.587 730 anda = 1.046 19(1/m).

me/m(Au197) = 0.276× 10−5. Some of these numerically determinedE/m1 versusα
values are listed in table 3 and plotted in figure 6 for the ground 0−(1S0) case. We do not
plot the perturbative results of equation (73) in figure 6 to avoid crowding. In any case
the perturbative approximations are virtually indistinguishable from the numerical on this
graph forα . αc/2. Recall that the analysis of the asymptotic behaviour of the bound state
J = 0 wavefunctions yielded the constraint|m1 − m2| 6 E(α) 6 m1 + m2 on the mass
M2 = E(α) of the two-body system (61), while the analysis of the small-r behaviour of the
wavefunctions yielded the constraintα 6 2 (66). Our numerical results are consistent with
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Figure 4. Same as figure 2 but for the lowest energy 0+(n = 2 3P0) state, withα = 1,
E/m = 1.928 55 anda = 3.774 96(1/m).

these analytical constraints. Thus, the 0− radial equations have normalizable ground-state
solutions only for|m1 −m2| 6 E(α) 6 m1 +m2, and for most values ofm2/m1 the critical
values ofα = αc beyond which the solution ceases to be acceptable as representing bound
states occur whenE(αc) = |m1 −m2|. ForE < |m1 −m2|, a becomes imaginary,a = ib,
which implies thats(r) behaves as e−ibr . Indeed we find that the numerical solutions do have
an oscillatory behaviour forE < |m1 − m2|. For m1 = m2 the numerical results indicate
that the critical coupling occurs at the other constraint boundary, namely atα = αc = 2,
for which E(αc) 6= |m1 −m2| = 0 but has the valueE(αc = 2) = 0.5877.
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Figure 5. Same as figure 2 but for the first excited 0+(n = 3 3P0) state, withα = 2,
E/m = 1.744 95 anda = 2.046 417(1/m).

Table 4 gives a list of values ofαc for variousm1/m2 ratios, obtained from the numerical
solutions. We note thatαc = 2 whenm1 = m2, but decreases towards 1 asm1/m2 → 0.
This is consistent with the Dirac value ofαc = 1. Nevertheless, for real one-electron
atoms, the present, higher critical value ofαc > 1 (Z > 137) is a slight reprieve of the
Z = 137 Coulomb ‘catastrophe’ of the Dirac equation, since no nuclei are infinitely heavy.
Furthermore, for high-Z one-electron atoms this critical value would be pushed even higher
by finite-size effects of the nucleus, as pointed out already for the Dirac case by Greiner
and Reinhardt [14].
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Table 3. E(α)/m2 for the 0−(1 1S0) state,m1 6= m2.

α m1/m2 = 1
2 m1/m2 = 1

4 m1/m2 = 1
10

0.1 1.498 33 1.2490 1.099 54
0.5 1.459 16 1.2250 1.088 31
0.8 1.3967 1.185 45 1.068 63
1.0 1.3387 1.1477 1.0486
1.2 1.2659 1.0992 1.0212
1.4 1.1752 1.0370 0.983 46
1.6 1.0593 0.9551 0.929 48
1.8 0.8992 0.8376
1.9 0.782 12
1.95 0.698 07
αc 0.5a 0.75b 0.9c

a αc = 1.999 93.
b αc = 1.898 19.
c αc = 1.681 75.

Table 4. Critical values ofα such thatE(αc) = |m1 −m2| for the ground state 0−(1S0).

m2

m1
αc

E(αc)

m1
=

∣∣∣∣1 − m2

m1

∣∣∣∣
1.0 2.0 0.587 73a

0.5 1.999 93 0.5
0.25 1.898 19 0.75
0.1 1.681 75 0.9
mµ

mτ
= 0.059 455 1.571 07 0.940 545

me

mP
= 0.544 617× 10−3 1.130 04 0.999 455 383
me

m(Au197)
= 0.276× 10−5 1.041 870 0.999 997 24

a E(αc) 6= |m1 −m2| = 0 in this case.

7. Radial equations forJ > 0 states

For states with total angular momentum quantum numberJ > 0 the radial reduction of
equations (29)–(32) yields, in general, the eight coupled radial equations

(m1 +m2 + V − E)s1 + A

[
−t ′1 ∓ J + 1

r
t1 − u′

1 ∓ J + 1

r
u1

]
+B

[
t ′2 − J̃

r
t2 ± u′

2 ∓ J̃

r
u2

]
= 0 (86)

(m1 +m2 + V − E)s2 + B

[
t ′1 + J

r
t1 ∓ u′

1 ∓ J

r
u1

]
+ A

[
t ′2 ∓ J

r
t2 − u′

2 ± J

r
u2

]
= 0 (87)

(m1 −m2 + V − E)t1 + A

[
s ′1 ∓ J + 1

r
s1 + v′

1 ∓ J + 1

r
v1

]
+B

[
−s ′2 + J

r
s2 ± v′

2 ∓ J

r
v2

]
= 0 (88)
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Figure 6. E(α)/m1 versusα for 0−(n = 1 1S0) and various mass ratios:m2/m1 = 1 (full
curve), 1

2 (broken curve),14 (chain curve), 1
10 (dash-double-dot curve).

(m1 −m2 + V − E)t2 + B

[
−s ′1 − J̃

r
s1 ∓ v′

1 ∓ J̃

r
v1

]
+ A

[
−s ′2 ∓ J

r
s2 + v′

2 ± J

r
v2

]
= 0

(89)

(m2 −m1 + V − E)u1 + A

[
s ′1 ∓ J + 1

r
s1 + v′

1 ∓ J + 1

r
v1

]
+B

[
±s ′2 ∓ J

r
s2 − v′

2 + J

r
v2

]
= 0 (90)
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(m2 −m1 + V − E)u2 + B

[
∓s ′1 ∓ J̃

r
s1 − v′

1 − J̃

r
v1

]
+ A

[
s ′2 ± J

r
s2 − v′

2 ∓ J

r
v2

]
= 0

(91)

(−m1 −m2 + V − E)v1 + A

[
−t ′1 ∓ J + 1

r
t1 − u′

1 ∓ J + 1

r
u1

]
+B

[
±t ′2 ∓ J̃

r
t2 + u′

2 − J̃

r
u2

]
= 0 (92)

(−m1 −m2 + V − E)v2 + B

[
∓t ′1 ∓ J

r
t1 + u′

1 + J

r
u1

]

+A
[
−t ′2 ± J

r
t2 + u′

2 ∓ J

r
u2

]
= 0 (93)

where

A =
√
J + 1

2J + 1
and B =

√
J

2J + 1

while the upper sign,̃J = J andJ = J + 1 corresponds to the parityP = −(−1)J states,
and the lower sign,J̃ = J + 1 andJ = J corresponds to the parityP = (−1)(−1)J±1

states. Note that ifs2 = u2 = t2 = v2 = 0 andJ = 0, then equations (86), (88), (90) and
(92) reduce to equations (56)–(59), while the remaining ones vanish identically.

We will not present numerical solutions of the radial equations forJ > 0 states in this
paper, however we shall make a number of observations about them, particularly in the
equal mass case.

The J > 0 coupled equations (86)–(93) also have the radial Dirac equations as their
limit if one of the masses becomes infinite. For example if we letE = m1 + ε, where
m1 → ∞, then equations (90)–(93) imply thatu1, u2, v1 and v2 → 0, whereas (86)–(89)
combine and reduce to the two Dirac equations

(m2 + V − ε)G− F ′ + κ

r
F = 0 (94)

(−m2 + V − ε)F +G′ + κ

r
G = 0 (95)

where for the parityP = −(−1)J (upper sign in (86)–(93)),

G = As1 − Bs2 F = t1

with κ = −(J + 1), while

G = Bs1 + As2 F = −t2
with κ = J . For the parityP = −(−1)J±1 (lower sign in (86)–(93)),

G = s1 F = At1 − Bt2

for κ = (J + 1), and

G = s2 F = −Bt1 − At2

for κ = −J . Equations (86)–(93) reduce similarly to radial Dirac equations in the case
m2 → ∞.

In the nonrelativistic limit, if we setE = m1 +m2 + ε and assume that

vi = O

(
ti , ui

2(m1 +m2)

)
(i = 1, 2) (96)
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are negligible, then equations (86)–(93) can be solved forti , ui in terms of si , and
so eliminated, to yield the expected reduced radial Schrödinger equation for the large
componentsi :

(V − ε)si − 1

2

(
1

m1
+ 1

m2

) [
s ′′i − l(l + 1)

r2
si

]
= 0 (97)

where l = J for both s1 and s2 if the parity isP = −(−1)J , but l = J + 1 for s1 and
l = J − 1 for s2 if the parity isP = −(−1)J±1. In short the radial equations for theJ > 0
states also have the expected one-fixed-fermion and nonrelativistic limits.

For the Coulomb potential,V (r) = −α/r, the critical values ofα = |q1q2|/4π , beyond
which the radial equations cease to have real solutions, can be inferred for some cases (as
also for theJ = 0 equations, and for the Dirac equation), by considering solutions such that
mi → 0,E → 0, andsi, ti , ui, vi are constants. It is easily verified that equations (86)–(93)
have such solutions for two sets of values ofαc, namelyα2

c = 4(J 2 + J + 1) (this includes
the J = 0 case discussed in section 6) andα2

c = 4J (J + 1).
The eight radial equations (86)–(93) forJ > 0 can be reduced to a smaller number in

the case of equal masses,m1 = m2 = m. Thus, for the parityP = −(−1)J states, they
reduce to two sets, one for the singlet (1JJ ) states and one for the triplet (3JJ ) states. For the
singlet statess2(r) = v2(r) = 0, t1(r) = u1(r) andt2(r) = u2(r), so that equations (86)–(93)
become

(2m+ V − E)s1 + 2A

(
−t ′1 − J + 1

r
t1

)
+ 2B

(
t ′2 − J

r
t2

)
= 0 (98)

(V − E)t1 + A

(
s ′1 − J + 1

r
s1 + v′

1 − J + 1

r
v1

)
= 0 (99)

(V − E)t2 + B

(
−s ′1 − J

r
s1 − v′

1 − J

r
v1

)
= 0 (100)

where

v1(r) = −2m+ V − E

2m− V + E
s1(r). (101)

For the triplet states, on the other hand,s1(r) = v1(r) = 0, u1(r) = −t1(r), u2(r) = −t2(r)
and equations (86)–(93) reduce to

(2m+ V − E)s2 + 2B

(
t ′1 + J + 1

r
t1

)
+ 2A

(
t ′2 − J

r
t2

)
= 0 (102)

(V − E)t1 + B

(
−s ′2 + J + 1

r
s2 + v′

2 − J + 1

r
v2

)
= 0 (103)

(V − E)t2 + A

(
−s ′2 − J

r
s2 + v′

2 + J

r
v2

)
= 0 (104)

where

v2(r) = 2m+ V − E

2m− V + E
s2(r). (105)

For the triplet, parityP = −(−1)J±1 states, the reduction of the eight coupled radial
equations (86)–(93) whenm1 = m2 is not as substantial. Evidently, ifm1 = m2, (88)
and (90) imply thatu1(r) = t1(r), and (89) and (91) imply thatu2(r) = −t2(r), so that
the number of equations is reduced to six. The reason for the relative complexity is the
coupling of the3(J+ 1)J and 3(J− 1)J states which occurs in this case.
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8. Discussion

There are many versions of coordinate-space two-fermion Dirac-like equations with
electromagnetic interactions, dating back to the work of Breit [15, 16]. Somewhat
surprisingly, the full radial reduction of such equations seems not to have appeared in
the literature until 1982, when it was done by Childers [25] in his discussion of the two-
body Dirac equation for semirelativistic quarks. Examples of other recent discussions are
those of Geigeret al [17], Barut andÜnal [18] and Sazdjian [19], and citations therein.
The most directly relevant for our purposes are the works of Malenfant [20] and Scottet al
[21], who deal with Coulomb interactions only (as we do) and who derive coupled radial
equations similar to ours. Our approach differs from these works in that we derive the
two-fermion equation quantum-field theoretically. Nevertheless, for the equal mass case,
which is the only case explicitly considered by these authors, our radial equations are the
same as theirs. This is not surprising, since the two-fermion equations considered in both
works [20, 21] are sums of free Dirac Hamiltonians with a purely Coulombic interfermion
potential, acting on a 16-component wavefunction. They are, in essence, Breit equations
with only the Coulomb interaction retained. Thus, the physical content of their equations
is the same as that of ours, given that our ansatz (20) is sensitive only to the Coulomb
interaction part of the QED Hamiltonian.

Since the formalism and notations are different in these works, we might mention
the specific correspondence. Our equal mass, parityP = −(−1)J singlet state radial
equations (97)–(100) are the same as Malenfant’s equations ([20], (21)), with the
identification s1 = P , v1 = R, t1 = −iQ+ and t2 = −iQ−, where Malenfant’s notation
is given on the right. These equations are also the same as Scottet al’s equations ([21],
(2.10)), with the identifications1 = rR1, t1 = rR2, t2 = rR∗

2 and v1 = rR3, where the
Scott et al notation is given on the right. For theP = −(−1)J triplet states our radial
equations (101)–(104) are the same as Malenfant’s equations ([20], (23)) and Scottet al’s
equations ([21], (2.12)). The correspondence iss2 = P , v2 = R, t1 = −iQ+ andt2 = −iQ−
(Malenfant), ands2 = rR1, t1 = −rR2, t2 = −rR∗

2 andv2 = −rR3 (Scott et al). There is
a similar correspondence among the parityP = −(−1)J±1 triplet equations.

Malenfant does not give explicit numerical solutions in his paper [20], while Scottet al
[21] give results form1 = m2 andα = 1

137 only. They quote energy eigenvaluesE(α = 1
137)

to 18 decimal figures, forn = 1, 2, 3 2S+1LJ states (in the nonrelativistic designation), which
they obtained using the finite element method. In our Runge–Kutta calculations we have
generally retained not more than 14 significant figures. However, as a check we calculated
the ground-state energy to 18 figures and obtained the identical result as Scottet al [21],
namelyEgr/m = 1.999 986 680 297 077 760.

Forα � 1 the numerical two-fermion Coulomb QED energy eigenvalues whenm1 = m2

are in excellent agreement with conventional perturbative results (73),1E = 1EK +1EC ,
with

1EK = − 1

16
mα4

(
2

(2l + 1)n3
− 3

4n4

)
(106)

and

1EC = −1

8
bmα4 1

n3
(107)

where b = −1 for the 0−+(1S0) and 1−−(3P1) states,b = 1
3 for 0++(3P0), b = 1

6 for
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1++(3P1) andb = 0 for the 1+−(1P1) states. Equations (105) and (106) yield

1E

mα4
= 3

64
,− 23

3072
,− 5

1024
,− 7

3072

for the 0−+(1 1S0), 0++(2 3P0), 1++(2 3P1) and 1+−(2 1P1) states respectively. Note that for
anm1 = m2 particle–antiparticle system the states are also charge conjugation eigenstates,
hence we have given theirJPC designations above.

Thus, for the ground state, the conventional perturbative result from equations (105)
and (106) isEptgr /m = 1.999 986 680 297 163 899. . ., which is the same as the numerical
result to 12 decimal figures. Indeed, at this low value ofα = 1

137, the numerical
energy eigenvalues agree with the perturbative values to an increasingly larger number
of decimal figures for the higher-energy states. For example, Scottet al [20] give
E(n = 2 3P0)/m = 1.999 996 670 019 771 708, as compared to the perturbative result ((105)
and (106)) ofEpt(n = 2 3P0)/m = 1.999 996 670 019 771 893. . .. These are identical to 15
decimal figures. In the case of then = 2 3P1 state the numerical and perturbative results
differ by one in the eighteenth decimal figure.

In comparing our two-fermion Dirac-like equation results (in which the negative-
energy components are retained and the vacuum is empty) to the lowest-order conventional
Coulomb QED results [3, 11] (in which the negative-energy components are effectively
projected out, and the vacuum is a Dirac ‘filled negative-energy sea’), we note the following.
The results are very similar at lowα (indeed the energy eigenvalues are the same to O(α4)),
but they are rather different for higherα. The difference in the highly relativistic limit can
be seen very clearly by comparing the critical values ofα. In the equal mass case, the lowest
energy O∓ states haveαc = 2 in the present formalism, butαc = 8π/(4 + π2) = 1.812. . . in
the lowest-order conventional formalism [11]. The disagreement at highα is, we believe,
due to the severe truncation of the infinite chain of Fock states that has been done in
the quoted conventional CQED studies. In analogy to what happens in the one-fermion
(m1/m2 → 0) limit, we expect that the two set of results would be the same if it were
possible to keep all orders in the conventional approach.

We do not compare the present results to the observed spectra of systems such as
µ+e− and e+e− since we have dealt here only with part of the QED Hamiltonian (the static
Coulomb part). The inclusion of transverse photon effects, which have been neglected in this
work, is a straightforward matter, at least at the perturbative O(α4) level in the conventional
approach [11, 13]. This then brings the predicted energy levels intoO(α4) agreement with
the observed spectra for systems such asµ+e− and e+e− [4–8, 25]. However, the inclusion
of the transverse photon interaction (7) in a non-perturbative, rigorously variational way
remains an outstanding problem.

Finally, we point out that the generalization of the present formalism to a three-
fermion Dirac-like system with purely Coulombic interactions, is straightforward, at least
in principle. It is only necessary to replace the two-particle ansatz (20) with a three-particle
one [23, 24]:

|3〉 =
∫

d3x d3y d3z Fαβγ (x,y, z)ψ
†
α(x)ψ

†
β(y)φ

†
β(z)|0̃〉 (108)

Of course, the reduction of the resulting system of equations to radial form is much more
complicated, and even then one is left with the full complexity of a three-body problem.
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9. Summary

We have shown that the Coulomb QED Hamiltonian has exact Dirac-like few-particle
eigenstates, which are just the usual Dirac states in the one-body case. In the case of two
bodies, the states are described by a 4×4 matrix Breit-like equation, with purely Coulombic
interfermion interactions. The two-fermion equation has the usual Dirac equation as its one
particle limit (when one of the fermion masses is infinite). It has the Schrödinger equation
for the relative motion of the two particles as its nonrelativistic limit.

We determined the form of the 4× 4 eigenmatrices for specificJP states. This led
to a simple and straightforward radial reduction of the two-fermion matrix equation. The
resulting radial equations have the radial Dirac equations as their one-body limit. These
radial equations are also shown to be equivalent to other radial reductions of two-fermion
equations with purely Coulombic interactions [20, 21].

We solved the radial equations numerically for a number ofJP = 0± states, for various
combinations of the masses,m1 andm2 of the two fermions, and various strengths of the
coupling α = |q1q2|/4π , whereq1 and q2 are the charges of the two fermions. For low
α our numerical solutions for the eigenenergies are in agreement with previously obtained
O(α4) conventional perturbative solutions [3, 11]. Our numerical results also agree with the
only other accurate numerical results that we know of, namely those of Scottet al [21],
who have published solutions for the equal mass case,m1 = m2, for α = 1

137.
Our numerical results for the energy eigenvalues as a function ofα, E(α), for various

values of the ratiosm1/m2, show thatE(α) has a Dirac-like behaviour. That is,E(α)
starts out with the non-relativistic formm1 +m2 −µα2/2n2 for α → 0 and then decreases
monotonically toE(αc) > |m1 −m2| asα reaches a critical valueαc. We find thatαc = 2
for m1/m2 = 1 but decreases monotonically with decreasingm1/m2 to the Dirac-Coulomb
value αc = 1 asm1/m2 → 0. The results thatαc 6 2 andE > |m1 − m2| are also
obtained analytically from an analysis of the small-r and asymptotic behaviour of the radial
wavefunctions (cf (66) and (61)). Lastly, our numerical results indicate a parity degeneracy
of αc = 2 whenm1 = m2 for the 0− and 0+ states (which start off, at lowα, as 1S0 and
3P0 states respectively).
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